AYSO4F2 (A = K, Rb): [YO4F4] Polyhedra Enhancement of Birefringence in Non-π-Conjugated Sulfate Systems

A mild hydrothermal method was employed to successfully synthesize two new sulfate fluorides, namely, AYSO4F2 (A = K, Rb). They are isomorphic, and both contain [YO4F4] polyhedra and [SO4] tetrahedra in the structure. Theoretical calculations and experimental tests show that AYSO4F2 (A = K, Rb) have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2024-03, Vol.63 (10), p.4783-4789
Hauptverfasser: Wu, Zhencheng, Li, Huimin, Hou, Xueling, Yang, Zhihua, Shi, Hongsheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mild hydrothermal method was employed to successfully synthesize two new sulfate fluorides, namely, AYSO4F2 (A = K, Rb). They are isomorphic, and both contain [YO4F4] polyhedra and [SO4] tetrahedra in the structure. Theoretical calculations and experimental tests show that AYSO4F2 (A = K, Rb) have large band gaps (7.79 and 7.82 eV) and moderate birefringence (0.015 and 0.02 @ 546.1 nm), with significantly enhanced birefringence and band gaps as compared to that of the single alkali metal sulfates A2SO4 (A = K, Rb). Furthermore, theoretical calculations show that [YO4F4] polyhedra are the main reason for the band gap and birefringence enhancement. This work contributes to the advancement of structural chemistry in the field of rare-earth sulfates, offering a novel approach for the design of sulfates characterized by large birefringence.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.4c00221