Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions

The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10 ×...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2005-06, Vol.48 (12), p.2429-2442
Hauptverfasser: Myers, Jerry G., Yerramilli, Vamsee K., Hussey, Sam W., Yee, Glenda F., Kim, Jungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2442
container_issue 12
container_start_page 2429
container_title International journal of heat and mass transfer
container_volume 48
creator Myers, Jerry G.
Yerramilli, Vamsee K.
Hussey, Sam W.
Yee, Glenda F.
Kim, Jungho
description The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10 × 10 microheater array with 100 μm resolution along with high-speed images. A numerical simulation was used to compute the substrate conduction, which was then subtracted from the heater power to obtain the wall-to-liquid heat transfer. The data indicated that most of the energy required for bubble growth came from the superheated layer around the bubble. Microlayer evaporation and contact line heat transfer accounted for not more than 23% of the total heat transferred from the surface. The dominant heat transfer mechanism was transient conduction into the liquid during bubble departure. Bubble coalescence was not observed to transfer a significant amount of heat.
doi_str_mv 10.1016/j.ijheatmasstransfer.2004.12.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29327227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931005001067</els_id><sourcerecordid>29327227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-46d38c17cda90b6de21b562475a54ba4788048bab6071787f9617677e3b631d03</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEEkvpf_AFxCXBdrJ2cgNVtIAqcWnP1sSeUK8cZ_E4LfwC_nYdbSWQuHCy_Obze2O9qnoneCO4UO8PjT_cIeQZiHKCSBOmRnLeNUI2fM-fVTvR66GWoh-eVzvOha6HVvCX1Suiw3blndpVv2_8jAyiY3QEiywhLeEeHXuAEFjG-YgJ8ppOzBbIprD-ZDMCFXXGmIm5Nfn4ncXVhgIgGxcfNuHB5ztml0gZYv7r8bis0UH6tc2cz74Qr6sXEwTC86fzrLq9_HRz8bm-_nb15eLjdW073ua6U67trdDWwcBH5VCKca9kp_ew70bodN_zrh9hVFwL3etpUEIrrbEdVSscb8-qtyffY1p-rEjZzJ4shgARl5WMHFqppdQF_HACbVqIEk7mmPxcljaCm60BczD_NmC2BoyQpjRQLN48ZQFZCFNhrKc_PkqrgYuN-3risHz83hcXsh6jRecT2mzc4v8_9BFntqvr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29327227</pqid></control><display><type>article</type><title>Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Myers, Jerry G. ; Yerramilli, Vamsee K. ; Hussey, Sam W. ; Yee, Glenda F. ; Kim, Jungho</creator><creatorcontrib>Myers, Jerry G. ; Yerramilli, Vamsee K. ; Hussey, Sam W. ; Yee, Glenda F. ; Kim, Jungho</creatorcontrib><description>The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10 × 10 microheater array with 100 μm resolution along with high-speed images. A numerical simulation was used to compute the substrate conduction, which was then subtracted from the heater power to obtain the wall-to-liquid heat transfer. The data indicated that most of the energy required for bubble growth came from the superheated layer around the bubble. Microlayer evaporation and contact line heat transfer accounted for not more than 23% of the total heat transferred from the surface. The dominant heat transfer mechanism was transient conduction into the liquid during bubble departure. Bubble coalescence was not observed to transfer a significant amount of heat.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2004.12.050</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling ; Energy ; Energy. Thermal use of fuels ; Evaporation ; Exact sciences and technology ; Heat transfer ; Microconvection ; Microheater array ; Microlayer ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of heat and mass transfer, 2005-06, Vol.48 (12), p.2429-2442</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-46d38c17cda90b6de21b562475a54ba4788048bab6071787f9617677e3b631d03</citedby><cites>FETCH-LOGICAL-c403t-46d38c17cda90b6de21b562475a54ba4788048bab6071787f9617677e3b631d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931005001067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16769010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Myers, Jerry G.</creatorcontrib><creatorcontrib>Yerramilli, Vamsee K.</creatorcontrib><creatorcontrib>Hussey, Sam W.</creatorcontrib><creatorcontrib>Yee, Glenda F.</creatorcontrib><creatorcontrib>Kim, Jungho</creatorcontrib><title>Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions</title><title>International journal of heat and mass transfer</title><description>The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10 × 10 microheater array with 100 μm resolution along with high-speed images. A numerical simulation was used to compute the substrate conduction, which was then subtracted from the heater power to obtain the wall-to-liquid heat transfer. The data indicated that most of the energy required for bubble growth came from the superheated layer around the bubble. Microlayer evaporation and contact line heat transfer accounted for not more than 23% of the total heat transferred from the surface. The dominant heat transfer mechanism was transient conduction into the liquid during bubble departure. Bubble coalescence was not observed to transfer a significant amount of heat.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Microconvection</subject><subject>Microheater array</subject><subject>Microlayer</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhSMEEkvpf_AFxCXBdrJ2cgNVtIAqcWnP1sSeUK8cZ_E4LfwC_nYdbSWQuHCy_Obze2O9qnoneCO4UO8PjT_cIeQZiHKCSBOmRnLeNUI2fM-fVTvR66GWoh-eVzvOha6HVvCX1Suiw3blndpVv2_8jAyiY3QEiywhLeEeHXuAEFjG-YgJ8ppOzBbIprD-ZDMCFXXGmIm5Nfn4ncXVhgIgGxcfNuHB5ztml0gZYv7r8bis0UH6tc2cz74Qr6sXEwTC86fzrLq9_HRz8bm-_nb15eLjdW073ua6U67trdDWwcBH5VCKca9kp_ew70bodN_zrh9hVFwL3etpUEIrrbEdVSscb8-qtyffY1p-rEjZzJ4shgARl5WMHFqppdQF_HACbVqIEk7mmPxcljaCm60BczD_NmC2BoyQpjRQLN48ZQFZCFNhrKc_PkqrgYuN-3risHz83hcXsh6jRecT2mzc4v8_9BFntqvr</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Myers, Jerry G.</creator><creator>Yerramilli, Vamsee K.</creator><creator>Hussey, Sam W.</creator><creator>Yee, Glenda F.</creator><creator>Kim, Jungho</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050601</creationdate><title>Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions</title><author>Myers, Jerry G. ; Yerramilli, Vamsee K. ; Hussey, Sam W. ; Yee, Glenda F. ; Kim, Jungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-46d38c17cda90b6de21b562475a54ba4788048bab6071787f9617677e3b631d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Microconvection</topic><topic>Microheater array</topic><topic>Microlayer</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myers, Jerry G.</creatorcontrib><creatorcontrib>Yerramilli, Vamsee K.</creatorcontrib><creatorcontrib>Hussey, Sam W.</creatorcontrib><creatorcontrib>Yee, Glenda F.</creatorcontrib><creatorcontrib>Kim, Jungho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myers, Jerry G.</au><au>Yerramilli, Vamsee K.</au><au>Hussey, Sam W.</au><au>Yee, Glenda F.</au><au>Kim, Jungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>48</volume><issue>12</issue><spage>2429</spage><epage>2442</epage><pages>2429-2442</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10 × 10 microheater array with 100 μm resolution along with high-speed images. A numerical simulation was used to compute the substrate conduction, which was then subtracted from the heater power to obtain the wall-to-liquid heat transfer. The data indicated that most of the energy required for bubble growth came from the superheated layer around the bubble. Microlayer evaporation and contact line heat transfer accounted for not more than 23% of the total heat transferred from the surface. The dominant heat transfer mechanism was transient conduction into the liquid during bubble departure. Bubble coalescence was not observed to transfer a significant amount of heat.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2004.12.050</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2005-06, Vol.48 (12), p.2429-2442
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_29327227
source Elsevier ScienceDirect Journals
subjects Applied sciences
Boiling
Energy
Energy. Thermal use of fuels
Evaporation
Exact sciences and technology
Heat transfer
Microconvection
Microheater array
Microlayer
Theoretical studies. Data and constants. Metering
title Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20and%20space%20resolved%20wall%20temperature%20and%20heat%20flux%20measurements%20during%20nucleate%20boiling%20with%20constant%20heat%20flux%20boundary%20conditions&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Myers,%20Jerry%20G.&rft.date=2005-06-01&rft.volume=48&rft.issue=12&rft.spage=2429&rft.epage=2442&rft.pages=2429-2442&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2004.12.050&rft_dat=%3Cproquest_cross%3E29327227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29327227&rft_id=info:pmid/&rft_els_id=S0017931005001067&rfr_iscdi=true