Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions
The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10 ×...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2005-06, Vol.48 (12), p.2429-2442 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2442 |
---|---|
container_issue | 12 |
container_start_page | 2429 |
container_title | International journal of heat and mass transfer |
container_volume | 48 |
creator | Myers, Jerry G. Yerramilli, Vamsee K. Hussey, Sam W. Yee, Glenda F. Kim, Jungho |
description | The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10
×
10 microheater array with 100
μm resolution along with high-speed images. A numerical simulation was used to compute the substrate conduction, which was then subtracted from the heater power to obtain the wall-to-liquid heat transfer. The data indicated that most of the energy required for bubble growth came from the superheated layer around the bubble. Microlayer evaporation and contact line heat transfer accounted for not more than 23% of the total heat transferred from the surface. The dominant heat transfer mechanism was transient conduction into the liquid during bubble departure. Bubble coalescence was not observed to transfer a significant amount of heat. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2004.12.050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29327227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931005001067</els_id><sourcerecordid>29327227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-46d38c17cda90b6de21b562475a54ba4788048bab6071787f9617677e3b631d03</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEEkvpf_AFxCXBdrJ2cgNVtIAqcWnP1sSeUK8cZ_E4LfwC_nYdbSWQuHCy_Obze2O9qnoneCO4UO8PjT_cIeQZiHKCSBOmRnLeNUI2fM-fVTvR66GWoh-eVzvOha6HVvCX1Suiw3blndpVv2_8jAyiY3QEiywhLeEeHXuAEFjG-YgJ8ppOzBbIprD-ZDMCFXXGmIm5Nfn4ncXVhgIgGxcfNuHB5ztml0gZYv7r8bis0UH6tc2cz74Qr6sXEwTC86fzrLq9_HRz8bm-_nb15eLjdW073ua6U67trdDWwcBH5VCKca9kp_ew70bodN_zrh9hVFwL3etpUEIrrbEdVSscb8-qtyffY1p-rEjZzJ4shgARl5WMHFqppdQF_HACbVqIEk7mmPxcljaCm60BczD_NmC2BoyQpjRQLN48ZQFZCFNhrKc_PkqrgYuN-3risHz83hcXsh6jRecT2mzc4v8_9BFntqvr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29327227</pqid></control><display><type>article</type><title>Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Myers, Jerry G. ; Yerramilli, Vamsee K. ; Hussey, Sam W. ; Yee, Glenda F. ; Kim, Jungho</creator><creatorcontrib>Myers, Jerry G. ; Yerramilli, Vamsee K. ; Hussey, Sam W. ; Yee, Glenda F. ; Kim, Jungho</creatorcontrib><description>The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10
×
10 microheater array with 100
μm resolution along with high-speed images. A numerical simulation was used to compute the substrate conduction, which was then subtracted from the heater power to obtain the wall-to-liquid heat transfer. The data indicated that most of the energy required for bubble growth came from the superheated layer around the bubble. Microlayer evaporation and contact line heat transfer accounted for not more than 23% of the total heat transferred from the surface. The dominant heat transfer mechanism was transient conduction into the liquid during bubble departure. Bubble coalescence was not observed to transfer a significant amount of heat.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2004.12.050</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling ; Energy ; Energy. Thermal use of fuels ; Evaporation ; Exact sciences and technology ; Heat transfer ; Microconvection ; Microheater array ; Microlayer ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of heat and mass transfer, 2005-06, Vol.48 (12), p.2429-2442</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-46d38c17cda90b6de21b562475a54ba4788048bab6071787f9617677e3b631d03</citedby><cites>FETCH-LOGICAL-c403t-46d38c17cda90b6de21b562475a54ba4788048bab6071787f9617677e3b631d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931005001067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16769010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Myers, Jerry G.</creatorcontrib><creatorcontrib>Yerramilli, Vamsee K.</creatorcontrib><creatorcontrib>Hussey, Sam W.</creatorcontrib><creatorcontrib>Yee, Glenda F.</creatorcontrib><creatorcontrib>Kim, Jungho</creatorcontrib><title>Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions</title><title>International journal of heat and mass transfer</title><description>The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10
×
10 microheater array with 100
μm resolution along with high-speed images. A numerical simulation was used to compute the substrate conduction, which was then subtracted from the heater power to obtain the wall-to-liquid heat transfer. The data indicated that most of the energy required for bubble growth came from the superheated layer around the bubble. Microlayer evaporation and contact line heat transfer accounted for not more than 23% of the total heat transferred from the surface. The dominant heat transfer mechanism was transient conduction into the liquid during bubble departure. Bubble coalescence was not observed to transfer a significant amount of heat.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Microconvection</subject><subject>Microheater array</subject><subject>Microlayer</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhSMEEkvpf_AFxCXBdrJ2cgNVtIAqcWnP1sSeUK8cZ_E4LfwC_nYdbSWQuHCy_Obze2O9qnoneCO4UO8PjT_cIeQZiHKCSBOmRnLeNUI2fM-fVTvR66GWoh-eVzvOha6HVvCX1Suiw3blndpVv2_8jAyiY3QEiywhLeEeHXuAEFjG-YgJ8ppOzBbIprD-ZDMCFXXGmIm5Nfn4ncXVhgIgGxcfNuHB5ztml0gZYv7r8bis0UH6tc2cz74Qr6sXEwTC86fzrLq9_HRz8bm-_nb15eLjdW073ua6U67trdDWwcBH5VCKca9kp_ew70bodN_zrh9hVFwL3etpUEIrrbEdVSscb8-qtyffY1p-rEjZzJ4shgARl5WMHFqppdQF_HACbVqIEk7mmPxcljaCm60BczD_NmC2BoyQpjRQLN48ZQFZCFNhrKc_PkqrgYuN-3risHz83hcXsh6jRecT2mzc4v8_9BFntqvr</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Myers, Jerry G.</creator><creator>Yerramilli, Vamsee K.</creator><creator>Hussey, Sam W.</creator><creator>Yee, Glenda F.</creator><creator>Kim, Jungho</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050601</creationdate><title>Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions</title><author>Myers, Jerry G. ; Yerramilli, Vamsee K. ; Hussey, Sam W. ; Yee, Glenda F. ; Kim, Jungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-46d38c17cda90b6de21b562475a54ba4788048bab6071787f9617677e3b631d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Microconvection</topic><topic>Microheater array</topic><topic>Microlayer</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myers, Jerry G.</creatorcontrib><creatorcontrib>Yerramilli, Vamsee K.</creatorcontrib><creatorcontrib>Hussey, Sam W.</creatorcontrib><creatorcontrib>Yee, Glenda F.</creatorcontrib><creatorcontrib>Kim, Jungho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myers, Jerry G.</au><au>Yerramilli, Vamsee K.</au><au>Hussey, Sam W.</au><au>Yee, Glenda F.</au><au>Kim, Jungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>48</volume><issue>12</issue><spage>2429</spage><epage>2442</epage><pages>2429-2442</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The lack of time and space resolved measurements under nucleating bubbles has complicated efforts to fully explain pool-boiling phenomena. In this work, time and space resolved temperature and heat flux distributions under nucleating bubbles on a constant heat flux surface were obtained using a 10
×
10 microheater array with 100
μm resolution along with high-speed images. A numerical simulation was used to compute the substrate conduction, which was then subtracted from the heater power to obtain the wall-to-liquid heat transfer. The data indicated that most of the energy required for bubble growth came from the superheated layer around the bubble. Microlayer evaporation and contact line heat transfer accounted for not more than 23% of the total heat transferred from the surface. The dominant heat transfer mechanism was transient conduction into the liquid during bubble departure. Bubble coalescence was not observed to transfer a significant amount of heat.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2004.12.050</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2005-06, Vol.48 (12), p.2429-2442 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_29327227 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boiling Energy Energy. Thermal use of fuels Evaporation Exact sciences and technology Heat transfer Microconvection Microheater array Microlayer Theoretical studies. Data and constants. Metering |
title | Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20and%20space%20resolved%20wall%20temperature%20and%20heat%20flux%20measurements%20during%20nucleate%20boiling%20with%20constant%20heat%20flux%20boundary%20conditions&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Myers,%20Jerry%20G.&rft.date=2005-06-01&rft.volume=48&rft.issue=12&rft.spage=2429&rft.epage=2442&rft.pages=2429-2442&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2004.12.050&rft_dat=%3Cproquest_cross%3E29327227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29327227&rft_id=info:pmid/&rft_els_id=S0017931005001067&rfr_iscdi=true |