Asymptotic expansions using blowup
The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up techn...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2005-05, Vol.56 (3), p.369-397 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | 3 |
container_start_page | 369 |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 56 |
creator | Van Gils, S Krupa, M Szmolyan, P |
description | The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up technique [5], [12] and the tools of geometric singular perturbation theory we derive asymptotic expansions of slow manifolds continued beyond the fold point. Our analysis explains the structure of the expansion and gives an algorithm for computing its coefficients. |
doi_str_mv | 10.1007/s00033-004-1021-y |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29324442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29324442</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_293244423</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEzKFgvD-AWHNyiJxcpjiKKD-Be2hIlkibRk6B9ezv4AE4_P3wAS4EbgVhuCRGV4oiaC5SC9yMohtFcynI3gSnRYxClQFXA6kB9F1NItmXmE2tPNnhimay_s8aFd45zGN9qR2bx6wzW59P1eOHxFZ7ZUKo6S61xrvYmZKrkXkmttVR_wy86jjaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29324442</pqid></control><display><type>article</type><title>Asymptotic expansions using blowup</title><source>SpringerLink Journals</source><creator>Van Gils, S ; Krupa, M ; Szmolyan, P</creator><creatorcontrib>Van Gils, S ; Krupa, M ; Szmolyan, P</creatorcontrib><description>The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up technique [5], [12] and the tools of geometric singular perturbation theory we derive asymptotic expansions of slow manifolds continued beyond the fold point. Our analysis explains the structure of the expansion and gives an algorithm for computing its coefficients.</description><identifier>ISSN: 0044-2275</identifier><identifier>DOI: 10.1007/s00033-004-1021-y</identifier><language>eng</language><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2005-05, Vol.56 (3), p.369-397</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Van Gils, S</creatorcontrib><creatorcontrib>Krupa, M</creatorcontrib><creatorcontrib>Szmolyan, P</creatorcontrib><title>Asymptotic expansions using blowup</title><title>Zeitschrift für angewandte Mathematik und Physik</title><description>The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up technique [5], [12] and the tools of geometric singular perturbation theory we derive asymptotic expansions of slow manifolds continued beyond the fold point. Our analysis explains the structure of the expansion and gives an algorithm for computing its coefficients.</description><issn>0044-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNyrsKwjAUgOEzKFgvD-AWHNyiJxcpjiKKD-Be2hIlkibRk6B9ezv4AE4_P3wAS4EbgVhuCRGV4oiaC5SC9yMohtFcynI3gSnRYxClQFXA6kB9F1NItmXmE2tPNnhimay_s8aFd45zGN9qR2bx6wzW59P1eOHxFZ7ZUKo6S61xrvYmZKrkXkmttVR_wy86jjaE</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Van Gils, S</creator><creator>Krupa, M</creator><creator>Szmolyan, P</creator><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050501</creationdate><title>Asymptotic expansions using blowup</title><author>Van Gils, S ; Krupa, M ; Szmolyan, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_293244423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Gils, S</creatorcontrib><creatorcontrib>Krupa, M</creatorcontrib><creatorcontrib>Szmolyan, P</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Gils, S</au><au>Krupa, M</au><au>Szmolyan, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic expansions using blowup</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>56</volume><issue>3</issue><spage>369</spage><epage>397</epage><pages>369-397</pages><issn>0044-2275</issn><abstract>The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up technique [5], [12] and the tools of geometric singular perturbation theory we derive asymptotic expansions of slow manifolds continued beyond the fold point. Our analysis explains the structure of the expansion and gives an algorithm for computing its coefficients.</abstract><doi>10.1007/s00033-004-1021-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2005-05, Vol.56 (3), p.369-397 |
issn | 0044-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_29324442 |
source | SpringerLink Journals |
title | Asymptotic expansions using blowup |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20expansions%20using%20blowup&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Van%20Gils,%20S&rft.date=2005-05-01&rft.volume=56&rft.issue=3&rft.spage=369&rft.epage=397&rft.pages=369-397&rft.issn=0044-2275&rft_id=info:doi/10.1007/s00033-004-1021-y&rft_dat=%3Cproquest%3E29324442%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29324442&rft_id=info:pmid/&rfr_iscdi=true |