Asymptotic expansions using blowup

The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2005-05, Vol.56 (3), p.369-397
Hauptverfasser: Van Gils, S, Krupa, M, Szmolyan, P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 3
container_start_page 369
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 56
creator Van Gils, S
Krupa, M
Szmolyan, P
description The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up technique [5], [12] and the tools of geometric singular perturbation theory we derive asymptotic expansions of slow manifolds continued beyond the fold point. Our analysis explains the structure of the expansion and gives an algorithm for computing its coefficients.
doi_str_mv 10.1007/s00033-004-1021-y
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29324442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29324442</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_293244423</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEzKFgvD-AWHNyiJxcpjiKKD-Be2hIlkibRk6B9ezv4AE4_P3wAS4EbgVhuCRGV4oiaC5SC9yMohtFcynI3gSnRYxClQFXA6kB9F1NItmXmE2tPNnhimay_s8aFd45zGN9qR2bx6wzW59P1eOHxFZ7ZUKo6S61xrvYmZKrkXkmttVR_wy86jjaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29324442</pqid></control><display><type>article</type><title>Asymptotic expansions using blowup</title><source>SpringerLink Journals</source><creator>Van Gils, S ; Krupa, M ; Szmolyan, P</creator><creatorcontrib>Van Gils, S ; Krupa, M ; Szmolyan, P</creatorcontrib><description>The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up technique [5], [12] and the tools of geometric singular perturbation theory we derive asymptotic expansions of slow manifolds continued beyond the fold point. Our analysis explains the structure of the expansion and gives an algorithm for computing its coefficients.</description><identifier>ISSN: 0044-2275</identifier><identifier>DOI: 10.1007/s00033-004-1021-y</identifier><language>eng</language><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2005-05, Vol.56 (3), p.369-397</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Van Gils, S</creatorcontrib><creatorcontrib>Krupa, M</creatorcontrib><creatorcontrib>Szmolyan, P</creatorcontrib><title>Asymptotic expansions using blowup</title><title>Zeitschrift für angewandte Mathematik und Physik</title><description>The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up technique [5], [12] and the tools of geometric singular perturbation theory we derive asymptotic expansions of slow manifolds continued beyond the fold point. Our analysis explains the structure of the expansion and gives an algorithm for computing its coefficients.</description><issn>0044-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNyrsKwjAUgOEzKFgvD-AWHNyiJxcpjiKKD-Be2hIlkibRk6B9ezv4AE4_P3wAS4EbgVhuCRGV4oiaC5SC9yMohtFcynI3gSnRYxClQFXA6kB9F1NItmXmE2tPNnhimay_s8aFd45zGN9qR2bx6wzW59P1eOHxFZ7ZUKo6S61xrvYmZKrkXkmttVR_wy86jjaE</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Van Gils, S</creator><creator>Krupa, M</creator><creator>Szmolyan, P</creator><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050501</creationdate><title>Asymptotic expansions using blowup</title><author>Van Gils, S ; Krupa, M ; Szmolyan, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_293244423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Gils, S</creatorcontrib><creatorcontrib>Krupa, M</creatorcontrib><creatorcontrib>Szmolyan, P</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Gils, S</au><au>Krupa, M</au><au>Szmolyan, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic expansions using blowup</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>56</volume><issue>3</issue><spage>369</spage><epage>397</epage><pages>369-397</pages><issn>0044-2275</issn><abstract>The method of matched asymptotic expansions and geometric singular perturbation theory are the most common and successful approaches to singular perturbation problems. In this work we establish a connection between the two approaches in the context of the simple fold problem. Using the blow-up technique [5], [12] and the tools of geometric singular perturbation theory we derive asymptotic expansions of slow manifolds continued beyond the fold point. Our analysis explains the structure of the expansion and gives an algorithm for computing its coefficients.</abstract><doi>10.1007/s00033-004-1021-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2005-05, Vol.56 (3), p.369-397
issn 0044-2275
language eng
recordid cdi_proquest_miscellaneous_29324442
source SpringerLink Journals
title Asymptotic expansions using blowup
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20expansions%20using%20blowup&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Van%20Gils,%20S&rft.date=2005-05-01&rft.volume=56&rft.issue=3&rft.spage=369&rft.epage=397&rft.pages=369-397&rft.issn=0044-2275&rft_id=info:doi/10.1007/s00033-004-1021-y&rft_dat=%3Cproquest%3E29324442%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29324442&rft_id=info:pmid/&rfr_iscdi=true