Enhanced linear and symmetric synaptic weight update characteristics in a Pt/p-LiCoOx/p-NiO/Pt memristor through interface energy barrier modulation by Li ion redistribution

Artificial synaptic devices have been extensively investigated for neuromorphic computing systems, which require synaptic behaviors mimicking the biological ones. In particular, a highly linear and symmetric weight update with a conductance (or resistance) change for potentiation and depression oper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-03, Vol.16 (11), p.5737-5749
Hauptverfasser: Jeong, Boyoung, Chung, Peter Hayoung, Han, Jimin, Noh, Taeyun, Tae-Sik Yoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5749
container_issue 11
container_start_page 5737
container_title Nanoscale
container_volume 16
creator Jeong, Boyoung
Chung, Peter Hayoung
Han, Jimin
Noh, Taeyun
Tae-Sik Yoon
description Artificial synaptic devices have been extensively investigated for neuromorphic computing systems, which require synaptic behaviors mimicking the biological ones. In particular, a highly linear and symmetric weight update with a conductance (or resistance) change for potentiation and depression operation is one of the essential requirements for energy-efficient neuromorphic computing; however, it is not sufficiently met. In this study, a memristor with a Pt/p-LiCoOx/p-NiO/Pt structure is investigated, where a low interface energy barrier between the Pt electrode and the NiO layer makes for a more linear and symmetric conductance change. In addition, the use of voltage-driven Li+ ion redistribution in the NiO layer facilitates the analog conductance change at a low voltage. Besides the linear and symmetric potentiation and depression weight updates, the memristor exhibits various synaptic characteristics such as the dependence of weight update on the pulse amplitude and number, paired pulse facilitation, and short-term and long-term plasticity. The conductance modulation is thought to be induced by a tunable interface energy barrier at the NiO layer and Pt bottom electrode, as a result of Li+ ion diffusion in NiO supplied from the LiCoOx layer and their redistribution. Thanks to the use of Li+ ion redistribution, the conductance change could be achieved at a voltage
doi_str_mv 10.1039/d3nr06091h
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932438762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932438762</sourcerecordid><originalsourceid>FETCH-LOGICAL-p252t-2298b4e743aaec52bb7d6f980dd9a859b76e5d49cee36986a3a58599ea268d3c3</originalsourceid><addsrcrecordid>eNpdjstOwzAQRSMEEqWw4QsssWET6tqJEy9RVR5SRLuAdTWxp42rxAm2I-hH8Y-4ArFgNUdzzx1NklzP6d2ccjnT3DoqqJw3J8mE0YymnBfs9I9Fdp5ceL-nVEgu-CT5WtoGrEJNWmMRHAGriT90HQZnVCQLQ4jwgWbXBDIOGgIS1YADFdAZH0NPjCVA1mE2pJVZ9KvPCC9mNVsH0mF3lHpHQuP6cddEN_a2oJCgRbc7kBqcM-hI1-uxhWB6S-oDqQw5kkMd687U4zG4TM620Hq8-p3T5O1h-bp4SqvV4_PivkoHlrOQMibLOsMi4wCoclbXhRZbWVKtJZS5rAuBuc6kQuRClgI45HEtEZgoNVd8mtz-3B1c_z6iD5vOeIVtCxb70W-Y5CzjZSFYVG_-qft-dDZ-F61cFJzTbM6_AdGlgcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956733041</pqid></control><display><type>article</type><title>Enhanced linear and symmetric synaptic weight update characteristics in a Pt/p-LiCoOx/p-NiO/Pt memristor through interface energy barrier modulation by Li ion redistribution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jeong, Boyoung ; Chung, Peter Hayoung ; Han, Jimin ; Noh, Taeyun ; Tae-Sik Yoon</creator><creatorcontrib>Jeong, Boyoung ; Chung, Peter Hayoung ; Han, Jimin ; Noh, Taeyun ; Tae-Sik Yoon</creatorcontrib><description>Artificial synaptic devices have been extensively investigated for neuromorphic computing systems, which require synaptic behaviors mimicking the biological ones. In particular, a highly linear and symmetric weight update with a conductance (or resistance) change for potentiation and depression operation is one of the essential requirements for energy-efficient neuromorphic computing; however, it is not sufficiently met. In this study, a memristor with a Pt/p-LiCoOx/p-NiO/Pt structure is investigated, where a low interface energy barrier between the Pt electrode and the NiO layer makes for a more linear and symmetric conductance change. In addition, the use of voltage-driven Li+ ion redistribution in the NiO layer facilitates the analog conductance change at a low voltage. Besides the linear and symmetric potentiation and depression weight updates, the memristor exhibits various synaptic characteristics such as the dependence of weight update on the pulse amplitude and number, paired pulse facilitation, and short-term and long-term plasticity. The conductance modulation is thought to be induced by a tunable interface energy barrier at the NiO layer and Pt bottom electrode, as a result of Li+ ion diffusion in NiO supplied from the LiCoOx layer and their redistribution. Thanks to the use of Li+ ion redistribution, the conductance change could be achieved at a voltage &lt;4 V within the time of μs range. These results verify the potential of artificial synapses with the Pt/LiCoOx/NiO/Pt memristor operated by voltage-driven Li+ ion redistribution under the low interface energy barrier conditions, realizing a highly linear and symmetric weight update at a low voltage with a high speed for energy-efficient neuromorphic computing systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr06091h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Diffusion layers ; Electrodes ; Energy ; Ion diffusion ; Lithium ions ; Low voltage ; Memristors ; Modulation ; Neuromorphic computing ; Nickel oxides ; Pulse amplitude ; Synapses</subject><ispartof>Nanoscale, 2024-03, Vol.16 (11), p.5737-5749</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jeong, Boyoung</creatorcontrib><creatorcontrib>Chung, Peter Hayoung</creatorcontrib><creatorcontrib>Han, Jimin</creatorcontrib><creatorcontrib>Noh, Taeyun</creatorcontrib><creatorcontrib>Tae-Sik Yoon</creatorcontrib><title>Enhanced linear and symmetric synaptic weight update characteristics in a Pt/p-LiCoOx/p-NiO/Pt memristor through interface energy barrier modulation by Li ion redistribution</title><title>Nanoscale</title><description>Artificial synaptic devices have been extensively investigated for neuromorphic computing systems, which require synaptic behaviors mimicking the biological ones. In particular, a highly linear and symmetric weight update with a conductance (or resistance) change for potentiation and depression operation is one of the essential requirements for energy-efficient neuromorphic computing; however, it is not sufficiently met. In this study, a memristor with a Pt/p-LiCoOx/p-NiO/Pt structure is investigated, where a low interface energy barrier between the Pt electrode and the NiO layer makes for a more linear and symmetric conductance change. In addition, the use of voltage-driven Li+ ion redistribution in the NiO layer facilitates the analog conductance change at a low voltage. Besides the linear and symmetric potentiation and depression weight updates, the memristor exhibits various synaptic characteristics such as the dependence of weight update on the pulse amplitude and number, paired pulse facilitation, and short-term and long-term plasticity. The conductance modulation is thought to be induced by a tunable interface energy barrier at the NiO layer and Pt bottom electrode, as a result of Li+ ion diffusion in NiO supplied from the LiCoOx layer and their redistribution. Thanks to the use of Li+ ion redistribution, the conductance change could be achieved at a voltage &lt;4 V within the time of μs range. These results verify the potential of artificial synapses with the Pt/LiCoOx/NiO/Pt memristor operated by voltage-driven Li+ ion redistribution under the low interface energy barrier conditions, realizing a highly linear and symmetric weight update at a low voltage with a high speed for energy-efficient neuromorphic computing systems.</description><subject>Diffusion layers</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Ion diffusion</subject><subject>Lithium ions</subject><subject>Low voltage</subject><subject>Memristors</subject><subject>Modulation</subject><subject>Neuromorphic computing</subject><subject>Nickel oxides</subject><subject>Pulse amplitude</subject><subject>Synapses</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjstOwzAQRSMEEqWw4QsssWET6tqJEy9RVR5SRLuAdTWxp42rxAm2I-hH8Y-4ArFgNUdzzx1NklzP6d2ccjnT3DoqqJw3J8mE0YymnBfs9I9Fdp5ceL-nVEgu-CT5WtoGrEJNWmMRHAGriT90HQZnVCQLQ4jwgWbXBDIOGgIS1YADFdAZH0NPjCVA1mE2pJVZ9KvPCC9mNVsH0mF3lHpHQuP6cddEN_a2oJCgRbc7kBqcM-hI1-uxhWB6S-oDqQw5kkMd687U4zG4TM620Hq8-p3T5O1h-bp4SqvV4_PivkoHlrOQMibLOsMi4wCoclbXhRZbWVKtJZS5rAuBuc6kQuRClgI45HEtEZgoNVd8mtz-3B1c_z6iD5vOeIVtCxb70W-Y5CzjZSFYVG_-qft-dDZ-F61cFJzTbM6_AdGlgcA</recordid><startdate>20240314</startdate><enddate>20240314</enddate><creator>Jeong, Boyoung</creator><creator>Chung, Peter Hayoung</creator><creator>Han, Jimin</creator><creator>Noh, Taeyun</creator><creator>Tae-Sik Yoon</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240314</creationdate><title>Enhanced linear and symmetric synaptic weight update characteristics in a Pt/p-LiCoOx/p-NiO/Pt memristor through interface energy barrier modulation by Li ion redistribution</title><author>Jeong, Boyoung ; Chung, Peter Hayoung ; Han, Jimin ; Noh, Taeyun ; Tae-Sik Yoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p252t-2298b4e743aaec52bb7d6f980dd9a859b76e5d49cee36986a3a58599ea268d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusion layers</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Ion diffusion</topic><topic>Lithium ions</topic><topic>Low voltage</topic><topic>Memristors</topic><topic>Modulation</topic><topic>Neuromorphic computing</topic><topic>Nickel oxides</topic><topic>Pulse amplitude</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Boyoung</creatorcontrib><creatorcontrib>Chung, Peter Hayoung</creatorcontrib><creatorcontrib>Han, Jimin</creatorcontrib><creatorcontrib>Noh, Taeyun</creatorcontrib><creatorcontrib>Tae-Sik Yoon</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Boyoung</au><au>Chung, Peter Hayoung</au><au>Han, Jimin</au><au>Noh, Taeyun</au><au>Tae-Sik Yoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced linear and symmetric synaptic weight update characteristics in a Pt/p-LiCoOx/p-NiO/Pt memristor through interface energy barrier modulation by Li ion redistribution</atitle><jtitle>Nanoscale</jtitle><date>2024-03-14</date><risdate>2024</risdate><volume>16</volume><issue>11</issue><spage>5737</spage><epage>5749</epage><pages>5737-5749</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Artificial synaptic devices have been extensively investigated for neuromorphic computing systems, which require synaptic behaviors mimicking the biological ones. In particular, a highly linear and symmetric weight update with a conductance (or resistance) change for potentiation and depression operation is one of the essential requirements for energy-efficient neuromorphic computing; however, it is not sufficiently met. In this study, a memristor with a Pt/p-LiCoOx/p-NiO/Pt structure is investigated, where a low interface energy barrier between the Pt electrode and the NiO layer makes for a more linear and symmetric conductance change. In addition, the use of voltage-driven Li+ ion redistribution in the NiO layer facilitates the analog conductance change at a low voltage. Besides the linear and symmetric potentiation and depression weight updates, the memristor exhibits various synaptic characteristics such as the dependence of weight update on the pulse amplitude and number, paired pulse facilitation, and short-term and long-term plasticity. The conductance modulation is thought to be induced by a tunable interface energy barrier at the NiO layer and Pt bottom electrode, as a result of Li+ ion diffusion in NiO supplied from the LiCoOx layer and their redistribution. Thanks to the use of Li+ ion redistribution, the conductance change could be achieved at a voltage &lt;4 V within the time of μs range. These results verify the potential of artificial synapses with the Pt/LiCoOx/NiO/Pt memristor operated by voltage-driven Li+ ion redistribution under the low interface energy barrier conditions, realizing a highly linear and symmetric weight update at a low voltage with a high speed for energy-efficient neuromorphic computing systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr06091h</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-03, Vol.16 (11), p.5737-5749
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2932438762
source Royal Society Of Chemistry Journals 2008-
subjects Diffusion layers
Electrodes
Energy
Ion diffusion
Lithium ions
Low voltage
Memristors
Modulation
Neuromorphic computing
Nickel oxides
Pulse amplitude
Synapses
title Enhanced linear and symmetric synaptic weight update characteristics in a Pt/p-LiCoOx/p-NiO/Pt memristor through interface energy barrier modulation by Li ion redistribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20linear%20and%20symmetric%20synaptic%20weight%20update%20characteristics%20in%20a%20Pt/p-LiCoOx/p-NiO/Pt%20memristor%20through%20interface%20energy%20barrier%20modulation%20by%20Li%20ion%20redistribution&rft.jtitle=Nanoscale&rft.au=Jeong,%20Boyoung&rft.date=2024-03-14&rft.volume=16&rft.issue=11&rft.spage=5737&rft.epage=5749&rft.pages=5737-5749&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr06091h&rft_dat=%3Cproquest%3E2932438762%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956733041&rft_id=info:pmid/&rfr_iscdi=true