Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells

The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEBS letters 2024-04, Vol.598 (8), p.915-934
Hauptverfasser: Giri, Amitava, Kar, Sandip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue 8
container_start_page 915
container_title FEBS letters
container_volume 598
creator Giri, Amitava
Kar, Sandip
description The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Herein, we demonstrate that steady‐state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom‐like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self‐renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future. Nanog and Oct4 are the key regulatory genes that govern the developmental dynamics of embryonic stem cells to trophectoderm and primitive endoderm by maintaining specific steady‐state expression patterns. Herein, we hypothesize stepwise switching and mushroom‐like bifurcation dynamics for Oct4 and Nanog, respectively, that align well with the existing experimental findings and shed light on fate‐determination events.
doi_str_mv 10.1002/1873-3468.14832
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932437870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153193076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3312-d20fb4757e9456737f30ccbdd4c5b575685c0c6b1baedc56ccb5d09f7f4d08c53</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhy0EoqUwsyGPLGnt2I6dEaoWKlViAYnNip0LDeRPiV2qbjwCz8iTkLSlayef77776fQhdE3JkBISjqiSLGA8UkPKFQtPUP_QOUV9QigPhIxZD104907av6LxOeoxxYmSkvfR66zy0BR59QEpNvnv94_ziSkAu3Xu7QIcfqu_oKmwXwC2UBQ4S3xb1WWZ-xIqj-sMQ2maTV3lFjsP5RZzl-gsSwoHV_t3gF6mk-fxYzB_epiN7-aBZYyGQRqSzHApJMRcRJLJjBFrTZpyK4yQIlLCEhsZahJIrYjamUhJnMmMp0RZwQbodpe7bOrPFTivy9x1FyQV1CunGRWMxozI6CgaxizkTCpJWnS0Q21TO9dAppdNXibNRlOiO_O686w7z3prvt242YevTAnpgf9X3QLRDljnBWyO5enp5D7cJf8BKfWPAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932437870</pqid></control><display><type>article</type><title>Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Giri, Amitava ; Kar, Sandip</creator><creatorcontrib>Giri, Amitava ; Kar, Sandip</creatorcontrib><description>The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Herein, we demonstrate that steady‐state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom‐like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self‐renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future. Nanog and Oct4 are the key regulatory genes that govern the developmental dynamics of embryonic stem cells to trophectoderm and primitive endoderm by maintaining specific steady‐state expression patterns. Herein, we hypothesize stepwise switching and mushroom‐like bifurcation dynamics for Oct4 and Nanog, respectively, that align well with the existing experimental findings and shed light on fate‐determination events.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1002/1873-3468.14832</identifier><identifier>PMID: 38408774</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Bifurcation theory ; Cell Differentiation ; Cell Lineage - genetics ; developmental dynamics ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; endoderm ; Gene Expression Regulation, Developmental ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Mice ; Models, Biological ; Mouse Embryonic Stem Cells - cytology ; Mouse Embryonic Stem Cells - metabolism ; Nanog Homeobox Protein - genetics ; Nanog Homeobox Protein - metabolism ; network motifs ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; stem cells ; stochastic simulation ; therapeutics</subject><ispartof>FEBS letters, 2024-04, Vol.598 (8), p.915-934</ispartof><rights>2024 Federation of European Biochemical Societies.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3312-d20fb4757e9456737f30ccbdd4c5b575685c0c6b1baedc56ccb5d09f7f4d08c53</cites><orcidid>0000-0003-1036-9111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1873-3468.14832$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1873-3468.14832$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38408774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giri, Amitava</creatorcontrib><creatorcontrib>Kar, Sandip</creatorcontrib><title>Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Herein, we demonstrate that steady‐state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom‐like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self‐renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future. Nanog and Oct4 are the key regulatory genes that govern the developmental dynamics of embryonic stem cells to trophectoderm and primitive endoderm by maintaining specific steady‐state expression patterns. Herein, we hypothesize stepwise switching and mushroom‐like bifurcation dynamics for Oct4 and Nanog, respectively, that align well with the existing experimental findings and shed light on fate‐determination events.</description><subject>Animals</subject><subject>Bifurcation theory</subject><subject>Cell Differentiation</subject><subject>Cell Lineage - genetics</subject><subject>developmental dynamics</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>endoderm</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Mouse Embryonic Stem Cells - cytology</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>Nanog Homeobox Protein - genetics</subject><subject>Nanog Homeobox Protein - metabolism</subject><subject>network motifs</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>stem cells</subject><subject>stochastic simulation</subject><subject>therapeutics</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL9OwzAQhy0EoqUwsyGPLGnt2I6dEaoWKlViAYnNip0LDeRPiV2qbjwCz8iTkLSlayef77776fQhdE3JkBISjqiSLGA8UkPKFQtPUP_QOUV9QigPhIxZD104907av6LxOeoxxYmSkvfR66zy0BR59QEpNvnv94_ziSkAu3Xu7QIcfqu_oKmwXwC2UBQ4S3xb1WWZ-xIqj-sMQ2maTV3lFjsP5RZzl-gsSwoHV_t3gF6mk-fxYzB_epiN7-aBZYyGQRqSzHApJMRcRJLJjBFrTZpyK4yQIlLCEhsZahJIrYjamUhJnMmMp0RZwQbodpe7bOrPFTivy9x1FyQV1CunGRWMxozI6CgaxizkTCpJWnS0Q21TO9dAppdNXibNRlOiO_O686w7z3prvt242YevTAnpgf9X3QLRDljnBWyO5enp5D7cJf8BKfWPAA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Giri, Amitava</creator><creator>Kar, Sandip</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1036-9111</orcidid></search><sort><creationdate>202404</creationdate><title>Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells</title><author>Giri, Amitava ; Kar, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3312-d20fb4757e9456737f30ccbdd4c5b575685c0c6b1baedc56ccb5d09f7f4d08c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bifurcation theory</topic><topic>Cell Differentiation</topic><topic>Cell Lineage - genetics</topic><topic>developmental dynamics</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>endoderm</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Mouse Embryonic Stem Cells - cytology</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>Nanog Homeobox Protein - genetics</topic><topic>Nanog Homeobox Protein - metabolism</topic><topic>network motifs</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>stem cells</topic><topic>stochastic simulation</topic><topic>therapeutics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giri, Amitava</creatorcontrib><creatorcontrib>Kar, Sandip</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Amitava</au><au>Kar, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2024-04</date><risdate>2024</risdate><volume>598</volume><issue>8</issue><spage>915</spage><epage>934</epage><pages>915-934</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Herein, we demonstrate that steady‐state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom‐like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self‐renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future. Nanog and Oct4 are the key regulatory genes that govern the developmental dynamics of embryonic stem cells to trophectoderm and primitive endoderm by maintaining specific steady‐state expression patterns. Herein, we hypothesize stepwise switching and mushroom‐like bifurcation dynamics for Oct4 and Nanog, respectively, that align well with the existing experimental findings and shed light on fate‐determination events.</abstract><cop>England</cop><pmid>38408774</pmid><doi>10.1002/1873-3468.14832</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1036-9111</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-5793
ispartof FEBS letters, 2024-04, Vol.598 (8), p.915-934
issn 0014-5793
1873-3468
language eng
recordid cdi_proquest_miscellaneous_2932437870
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Bifurcation theory
Cell Differentiation
Cell Lineage - genetics
developmental dynamics
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
endoderm
Gene Expression Regulation, Developmental
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Mice
Models, Biological
Mouse Embryonic Stem Cells - cytology
Mouse Embryonic Stem Cells - metabolism
Nanog Homeobox Protein - genetics
Nanog Homeobox Protein - metabolism
network motifs
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - metabolism
stem cells
stochastic simulation
therapeutics
title Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interlinked%20bi%E2%80%90stable%20switches%20govern%20the%20cell%20fate%20commitment%20of%20embryonic%20stem%20cells&rft.jtitle=FEBS%20letters&rft.au=Giri,%20Amitava&rft.date=2024-04&rft.volume=598&rft.issue=8&rft.spage=915&rft.epage=934&rft.pages=915-934&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1002/1873-3468.14832&rft_dat=%3Cproquest_cross%3E3153193076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932437870&rft_id=info:pmid/38408774&rfr_iscdi=true