Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells
The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Here...
Gespeichert in:
Veröffentlicht in: | FEBS letters 2024-04, Vol.598 (8), p.915-934 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 934 |
---|---|
container_issue | 8 |
container_start_page | 915 |
container_title | FEBS letters |
container_volume | 598 |
creator | Giri, Amitava Kar, Sandip |
description | The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Herein, we demonstrate that steady‐state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom‐like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self‐renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future.
Nanog and Oct4 are the key regulatory genes that govern the developmental dynamics of embryonic stem cells to trophectoderm and primitive endoderm by maintaining specific steady‐state expression patterns. Herein, we hypothesize stepwise switching and mushroom‐like bifurcation dynamics for Oct4 and Nanog, respectively, that align well with the existing experimental findings and shed light on fate‐determination events. |
doi_str_mv | 10.1002/1873-3468.14832 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932437870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153193076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3312-d20fb4757e9456737f30ccbdd4c5b575685c0c6b1baedc56ccb5d09f7f4d08c53</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhy0EoqUwsyGPLGnt2I6dEaoWKlViAYnNip0LDeRPiV2qbjwCz8iTkLSlayef77776fQhdE3JkBISjqiSLGA8UkPKFQtPUP_QOUV9QigPhIxZD104907av6LxOeoxxYmSkvfR66zy0BR59QEpNvnv94_ziSkAu3Xu7QIcfqu_oKmwXwC2UBQ4S3xb1WWZ-xIqj-sMQ2maTV3lFjsP5RZzl-gsSwoHV_t3gF6mk-fxYzB_epiN7-aBZYyGQRqSzHApJMRcRJLJjBFrTZpyK4yQIlLCEhsZahJIrYjamUhJnMmMp0RZwQbodpe7bOrPFTivy9x1FyQV1CunGRWMxozI6CgaxizkTCpJWnS0Q21TO9dAppdNXibNRlOiO_O686w7z3prvt242YevTAnpgf9X3QLRDljnBWyO5enp5D7cJf8BKfWPAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932437870</pqid></control><display><type>article</type><title>Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Giri, Amitava ; Kar, Sandip</creator><creatorcontrib>Giri, Amitava ; Kar, Sandip</creatorcontrib><description>The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Herein, we demonstrate that steady‐state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom‐like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self‐renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future.
Nanog and Oct4 are the key regulatory genes that govern the developmental dynamics of embryonic stem cells to trophectoderm and primitive endoderm by maintaining specific steady‐state expression patterns. Herein, we hypothesize stepwise switching and mushroom‐like bifurcation dynamics for Oct4 and Nanog, respectively, that align well with the existing experimental findings and shed light on fate‐determination events.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1002/1873-3468.14832</identifier><identifier>PMID: 38408774</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Bifurcation theory ; Cell Differentiation ; Cell Lineage - genetics ; developmental dynamics ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; endoderm ; Gene Expression Regulation, Developmental ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Mice ; Models, Biological ; Mouse Embryonic Stem Cells - cytology ; Mouse Embryonic Stem Cells - metabolism ; Nanog Homeobox Protein - genetics ; Nanog Homeobox Protein - metabolism ; network motifs ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; stem cells ; stochastic simulation ; therapeutics</subject><ispartof>FEBS letters, 2024-04, Vol.598 (8), p.915-934</ispartof><rights>2024 Federation of European Biochemical Societies.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3312-d20fb4757e9456737f30ccbdd4c5b575685c0c6b1baedc56ccb5d09f7f4d08c53</cites><orcidid>0000-0003-1036-9111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1873-3468.14832$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1873-3468.14832$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38408774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giri, Amitava</creatorcontrib><creatorcontrib>Kar, Sandip</creatorcontrib><title>Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Herein, we demonstrate that steady‐state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom‐like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self‐renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future.
Nanog and Oct4 are the key regulatory genes that govern the developmental dynamics of embryonic stem cells to trophectoderm and primitive endoderm by maintaining specific steady‐state expression patterns. Herein, we hypothesize stepwise switching and mushroom‐like bifurcation dynamics for Oct4 and Nanog, respectively, that align well with the existing experimental findings and shed light on fate‐determination events.</description><subject>Animals</subject><subject>Bifurcation theory</subject><subject>Cell Differentiation</subject><subject>Cell Lineage - genetics</subject><subject>developmental dynamics</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>endoderm</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Mouse Embryonic Stem Cells - cytology</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>Nanog Homeobox Protein - genetics</subject><subject>Nanog Homeobox Protein - metabolism</subject><subject>network motifs</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>stem cells</subject><subject>stochastic simulation</subject><subject>therapeutics</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL9OwzAQhy0EoqUwsyGPLGnt2I6dEaoWKlViAYnNip0LDeRPiV2qbjwCz8iTkLSlayef77776fQhdE3JkBISjqiSLGA8UkPKFQtPUP_QOUV9QigPhIxZD104907av6LxOeoxxYmSkvfR66zy0BR59QEpNvnv94_ziSkAu3Xu7QIcfqu_oKmwXwC2UBQ4S3xb1WWZ-xIqj-sMQ2maTV3lFjsP5RZzl-gsSwoHV_t3gF6mk-fxYzB_epiN7-aBZYyGQRqSzHApJMRcRJLJjBFrTZpyK4yQIlLCEhsZahJIrYjamUhJnMmMp0RZwQbodpe7bOrPFTivy9x1FyQV1CunGRWMxozI6CgaxizkTCpJWnS0Q21TO9dAppdNXibNRlOiO_O686w7z3prvt242YevTAnpgf9X3QLRDljnBWyO5enp5D7cJf8BKfWPAA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Giri, Amitava</creator><creator>Kar, Sandip</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1036-9111</orcidid></search><sort><creationdate>202404</creationdate><title>Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells</title><author>Giri, Amitava ; Kar, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3312-d20fb4757e9456737f30ccbdd4c5b575685c0c6b1baedc56ccb5d09f7f4d08c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bifurcation theory</topic><topic>Cell Differentiation</topic><topic>Cell Lineage - genetics</topic><topic>developmental dynamics</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>endoderm</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Mouse Embryonic Stem Cells - cytology</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>Nanog Homeobox Protein - genetics</topic><topic>Nanog Homeobox Protein - metabolism</topic><topic>network motifs</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>stem cells</topic><topic>stochastic simulation</topic><topic>therapeutics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giri, Amitava</creatorcontrib><creatorcontrib>Kar, Sandip</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Amitava</au><au>Kar, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2024-04</date><risdate>2024</risdate><volume>598</volume><issue>8</issue><spage>915</spage><epage>934</epage><pages>915-934</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady‐state expression patterns of two key transcription factors—Oct4 and Nanog. How dynamically such kind of steady‐state expressions are maintained remains elusive. Herein, we demonstrate that steady‐state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom‐like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self‐renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future.
Nanog and Oct4 are the key regulatory genes that govern the developmental dynamics of embryonic stem cells to trophectoderm and primitive endoderm by maintaining specific steady‐state expression patterns. Herein, we hypothesize stepwise switching and mushroom‐like bifurcation dynamics for Oct4 and Nanog, respectively, that align well with the existing experimental findings and shed light on fate‐determination events.</abstract><cop>England</cop><pmid>38408774</pmid><doi>10.1002/1873-3468.14832</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1036-9111</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-5793 |
ispartof | FEBS letters, 2024-04, Vol.598 (8), p.915-934 |
issn | 0014-5793 1873-3468 |
language | eng |
recordid | cdi_proquest_miscellaneous_2932437870 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Bifurcation theory Cell Differentiation Cell Lineage - genetics developmental dynamics Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism endoderm Gene Expression Regulation, Developmental Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Mice Models, Biological Mouse Embryonic Stem Cells - cytology Mouse Embryonic Stem Cells - metabolism Nanog Homeobox Protein - genetics Nanog Homeobox Protein - metabolism network motifs Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism stem cells stochastic simulation therapeutics |
title | Interlinked bi‐stable switches govern the cell fate commitment of embryonic stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interlinked%20bi%E2%80%90stable%20switches%20govern%20the%20cell%20fate%20commitment%20of%20embryonic%20stem%20cells&rft.jtitle=FEBS%20letters&rft.au=Giri,%20Amitava&rft.date=2024-04&rft.volume=598&rft.issue=8&rft.spage=915&rft.epage=934&rft.pages=915-934&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1002/1873-3468.14832&rft_dat=%3Cproquest_cross%3E3153193076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932437870&rft_id=info:pmid/38408774&rfr_iscdi=true |