Effects of multi-plant harvesting on nitrogen removal and recovery in constructed wetlands
The harvesting of plants is considered an effective method for nutrient recovery in constructed wetlands (CWs). However, excessive plant harvesting can lead to a decrease in plant biomass. It remains unclear what harvesting frequency can optimize plant nutrient uptake and pollutant removal. In this...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2024-04, Vol.353, p.141550-141550, Article 141550 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The harvesting of plants is considered an effective method for nutrient recovery in constructed wetlands (CWs). However, excessive plant harvesting can lead to a decrease in plant biomass. It remains unclear what harvesting frequency can optimize plant nutrient uptake and pollutant removal. In this study, CWs planted with Myriophyllum aquaticum were constructed, and three different frequencies of plant harvesting (high: 45 days/time; low: 90 days/time; none: CK) were set to investigate nitrogen removal and its influencing mechanism, as well as the capacity for plant nutrient recovery. The results showed that the average removal efficiencies of ammonia nitrogen (NH4+-N) at 45 days/time, 90 days/time, and CK were 90.3%, 90.8%, and 88.3% respectively, while the corresponding total nitrogen (TN) were 61.2%, 67.4%, and 67.4%. Dissolved oxygen (DO) concentration and water temperature were identified as the main environmental factors affecting nitrogen removal efficiency. Low harvest frequency (90 days/time) increased DO concentration and NH4+-N removal efficiency without impacting TN removal. Additionally, TN recovery from plants under high and low harvest was found to be approximately 9.21–9.32 times higher than that from no harvest conditions. The above studies indicated that a harvest frequency of every 90 days was one appropriate option for M. aquaticum, which not only increased NH4+-N removal efficiencies but also facilitated more efficient nitrogen recovery from the wetland system.
[Display omitted]
•Plant harvesting can increase the DO concentration and NH4+-N removal efficiency.•High frequency of plant harvesting resulted in more NO3−-N accumulation.•Multiple plant-harvesting recovered 9.21–9.32 times nitrogen than non-harvesting.•Microbial nitrification and denitrification is the main nitrogen removal pathway. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2024.141550 |