Prediction of a Multi-Gene Assay (Oncotype DX and Mammaprint) Recurrence Risk Group Using Machine Learning in Estrogen Receptor-Positive, HER2-Negative Breast Cancer-The BRAIN Study

This study aimed to develop a machine learning-based prediction model for predicting multi-gene assay (MGA) risk categories. Patients with estrogen receptor-positive (ER+)/HER2- breast cancer who had undergone Oncotype DX (ODX) or MammaPrint (MMP) were used to develop the prediction model. The devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2024-02, Vol.16 (4), p.774
Hauptverfasser: Ji, Jung-Hwan, Ahn, Sung Gwe, Yoo, Youngbum, Park, Shin-Young, Kim, Joo-Heung, Jeong, Ji-Yeong, Park, Seho, Lee, Ilkyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to develop a machine learning-based prediction model for predicting multi-gene assay (MGA) risk categories. Patients with estrogen receptor-positive (ER+)/HER2- breast cancer who had undergone Oncotype DX (ODX) or MammaPrint (MMP) were used to develop the prediction model. The development cohort consisted of a total of 2565 patients including 2039 patients tested with ODX and 526 patients tested with MMP. The MMP risk prediction model utilized a single XGBoost model, and the ODX risk prediction model utilized combined LightGBM, CatBoost, and XGBoost models through soft voting. Additionally, the ensemble (MMP + ODX) model combining MMP and ODX utilized CatBoost and XGBoost through soft voting. Ten random samples, corresponding to 10% of the modeling dataset, were extracted, and cross-validation was performed to evaluate the accuracy on each validation set. The accuracy of our predictive models was 84.8% for MMP, 87.9% for ODX, and 86.8% for the ensemble model. In the ensemble cohort, the sensitivity, specificity, and precision for predicting the low-risk category were 0.91, 0.66, and 0.92, respectively. The prediction accuracy exceeded 90% in several subgroups, with the highest prediction accuracy of 95.7% in the subgroup that met Ki-67
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers16040774