Least-squares finite-element methods for optimization and control problems for the stokes equations

The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2004-10, Vol.48 (7), p.1035-1057
Hauptverfasser: Bochev, P., Gunzburger, M.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1057
container_issue 7
container_start_page 1035
container_title Computers & mathematics with applications (1987)
container_volume 48
creator Bochev, P.
Gunzburger, M.D.
description The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes.
doi_str_mv 10.1016/j.camwa.2004.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29323520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812210400344X</els_id><sourcerecordid>29323520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-5b5ae2e5eda4679c0e10f1f1e1b7479451fa210da653652cc953096c02b951393</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwCVg8sSX4T5zEAwOqoCBVYoHZcpwX1SWJW9sFwafHIcxMJ51-d3rvELqmJKeElre73OjhU-eMkCI5eZITtKB1xbOqLOtTtCC1rDPKGD1HFyHsSCI4IwtkNqBDzMLhqD0E3NnRRsighwHGiAeIW9cm23ns9tEO9ltH60asxxYbN0bverz3rkn8TMUt4BDde-qC1DnB4RKddboPcPWnS_T2-PC6eso2L-vn1f0mM7ySMRON0MBAQKuLspKGACUd7SjQpioqWQjaaUZJq0vBS8GMkYITWRrCGikol3yJbubedNHhCCGqwQYDfa9HcMegmOSMC0YSyGfQeBeCh07tvR20_1KUqGlQtVO_g6pp0Mmc5lqiuzkF6YcPC14FY2E00FoPJqrW2X_zP9KdgVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29323520</pqid></control><display><type>article</type><title>Least-squares finite-element methods for optimization and control problems for the stokes equations</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bochev, P. ; Gunzburger, M.D.</creator><creatorcontrib>Bochev, P. ; Gunzburger, M.D.</creatorcontrib><description>The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2004.10.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Finite elements ; Least-squares ; Optimal control ; Optimization</subject><ispartof>Computers &amp; mathematics with applications (1987), 2004-10, Vol.48 (7), p.1035-1057</ispartof><rights>2004 Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-5b5ae2e5eda4679c0e10f1f1e1b7479451fa210da653652cc953096c02b951393</citedby><cites>FETCH-LOGICAL-c379t-5b5ae2e5eda4679c0e10f1f1e1b7479451fa210da653652cc953096c02b951393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089812210400344X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bochev, P.</creatorcontrib><creatorcontrib>Gunzburger, M.D.</creatorcontrib><title>Least-squares finite-element methods for optimization and control problems for the stokes equations</title><title>Computers &amp; mathematics with applications (1987)</title><description>The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes.</description><subject>Finite elements</subject><subject>Least-squares</subject><subject>Optimal control</subject><subject>Optimization</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwCVg8sSX4T5zEAwOqoCBVYoHZcpwX1SWJW9sFwafHIcxMJ51-d3rvELqmJKeElre73OjhU-eMkCI5eZITtKB1xbOqLOtTtCC1rDPKGD1HFyHsSCI4IwtkNqBDzMLhqD0E3NnRRsighwHGiAeIW9cm23ns9tEO9ltH60asxxYbN0bverz3rkn8TMUt4BDde-qC1DnB4RKddboPcPWnS_T2-PC6eso2L-vn1f0mM7ySMRON0MBAQKuLspKGACUd7SjQpioqWQjaaUZJq0vBS8GMkYITWRrCGikol3yJbubedNHhCCGqwQYDfa9HcMegmOSMC0YSyGfQeBeCh07tvR20_1KUqGlQtVO_g6pp0Mmc5lqiuzkF6YcPC14FY2E00FoPJqrW2X_zP9KdgVg</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Bochev, P.</creator><creator>Gunzburger, M.D.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041001</creationdate><title>Least-squares finite-element methods for optimization and control problems for the stokes equations</title><author>Bochev, P. ; Gunzburger, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-5b5ae2e5eda4679c0e10f1f1e1b7479451fa210da653652cc953096c02b951393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Finite elements</topic><topic>Least-squares</topic><topic>Optimal control</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bochev, P.</creatorcontrib><creatorcontrib>Gunzburger, M.D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bochev, P.</au><au>Gunzburger, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least-squares finite-element methods for optimization and control problems for the stokes equations</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>48</volume><issue>7</issue><spage>1035</spage><epage>1057</epage><pages>1035-1057</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2004.10.004</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2004-10, Vol.48 (7), p.1035-1057
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_29323520
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Finite elements
Least-squares
Optimal control
Optimization
title Least-squares finite-element methods for optimization and control problems for the stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least-squares%20finite-element%20methods%20for%20optimization%20and%20control%20problems%20for%20the%20stokes%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Bochev,%20P.&rft.date=2004-10-01&rft.volume=48&rft.issue=7&rft.spage=1035&rft.epage=1057&rft.pages=1035-1057&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2004.10.004&rft_dat=%3Cproquest_cross%3E29323520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29323520&rft_id=info:pmid/&rft_els_id=S089812210400344X&rfr_iscdi=true