Least-squares finite-element methods for optimization and control problems for the stokes equations
The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used i...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2004-10, Vol.48 (7), p.1035-1057 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1057 |
---|---|
container_issue | 7 |
container_start_page | 1035 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 48 |
creator | Bochev, P. Gunzburger, M.D. |
description | The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes. |
doi_str_mv | 10.1016/j.camwa.2004.10.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29323520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812210400344X</els_id><sourcerecordid>29323520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-5b5ae2e5eda4679c0e10f1f1e1b7479451fa210da653652cc953096c02b951393</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwCVg8sSX4T5zEAwOqoCBVYoHZcpwX1SWJW9sFwafHIcxMJ51-d3rvELqmJKeElre73OjhU-eMkCI5eZITtKB1xbOqLOtTtCC1rDPKGD1HFyHsSCI4IwtkNqBDzMLhqD0E3NnRRsighwHGiAeIW9cm23ns9tEO9ltH60asxxYbN0bverz3rkn8TMUt4BDde-qC1DnB4RKddboPcPWnS_T2-PC6eso2L-vn1f0mM7ySMRON0MBAQKuLspKGACUd7SjQpioqWQjaaUZJq0vBS8GMkYITWRrCGikol3yJbubedNHhCCGqwQYDfa9HcMegmOSMC0YSyGfQeBeCh07tvR20_1KUqGlQtVO_g6pp0Mmc5lqiuzkF6YcPC14FY2E00FoPJqrW2X_zP9KdgVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29323520</pqid></control><display><type>article</type><title>Least-squares finite-element methods for optimization and control problems for the stokes equations</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bochev, P. ; Gunzburger, M.D.</creator><creatorcontrib>Bochev, P. ; Gunzburger, M.D.</creatorcontrib><description>The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2004.10.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Finite elements ; Least-squares ; Optimal control ; Optimization</subject><ispartof>Computers & mathematics with applications (1987), 2004-10, Vol.48 (7), p.1035-1057</ispartof><rights>2004 Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-5b5ae2e5eda4679c0e10f1f1e1b7479451fa210da653652cc953096c02b951393</citedby><cites>FETCH-LOGICAL-c379t-5b5ae2e5eda4679c0e10f1f1e1b7479451fa210da653652cc953096c02b951393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089812210400344X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bochev, P.</creatorcontrib><creatorcontrib>Gunzburger, M.D.</creatorcontrib><title>Least-squares finite-element methods for optimization and control problems for the stokes equations</title><title>Computers & mathematics with applications (1987)</title><description>The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes.</description><subject>Finite elements</subject><subject>Least-squares</subject><subject>Optimal control</subject><subject>Optimization</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwCVg8sSX4T5zEAwOqoCBVYoHZcpwX1SWJW9sFwafHIcxMJ51-d3rvELqmJKeElre73OjhU-eMkCI5eZITtKB1xbOqLOtTtCC1rDPKGD1HFyHsSCI4IwtkNqBDzMLhqD0E3NnRRsighwHGiAeIW9cm23ns9tEO9ltH60asxxYbN0bverz3rkn8TMUt4BDde-qC1DnB4RKddboPcPWnS_T2-PC6eso2L-vn1f0mM7ySMRON0MBAQKuLspKGACUd7SjQpioqWQjaaUZJq0vBS8GMkYITWRrCGikol3yJbubedNHhCCGqwQYDfa9HcMegmOSMC0YSyGfQeBeCh07tvR20_1KUqGlQtVO_g6pp0Mmc5lqiuzkF6YcPC14FY2E00FoPJqrW2X_zP9KdgVg</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Bochev, P.</creator><creator>Gunzburger, M.D.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041001</creationdate><title>Least-squares finite-element methods for optimization and control problems for the stokes equations</title><author>Bochev, P. ; Gunzburger, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-5b5ae2e5eda4679c0e10f1f1e1b7479451fa210da653652cc953096c02b951393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Finite elements</topic><topic>Least-squares</topic><topic>Optimal control</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bochev, P.</creatorcontrib><creatorcontrib>Gunzburger, M.D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bochev, P.</au><au>Gunzburger, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least-squares finite-element methods for optimization and control problems for the stokes equations</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>48</volume><issue>7</issue><spage>1035</spage><epage>1057</epage><pages>1035-1057</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2004.10.004</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2004-10, Vol.48 (7), p.1035-1057 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_29323520 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Finite elements Least-squares Optimal control Optimization |
title | Least-squares finite-element methods for optimization and control problems for the stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least-squares%20finite-element%20methods%20for%20optimization%20and%20control%20problems%20for%20the%20stokes%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Bochev,%20P.&rft.date=2004-10-01&rft.volume=48&rft.issue=7&rft.spage=1035&rft.epage=1057&rft.pages=1035-1057&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2004.10.004&rft_dat=%3Cproquest_cross%3E29323520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29323520&rft_id=info:pmid/&rft_els_id=S089812210400344X&rfr_iscdi=true |