Comparing the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the Taiwan Psychiatric Licensing Examination and in differential diagnosis with multi‐center psychiatrists
Aim Large language models (LLMs) have been suggested to play a role in medical education and medical practice. However, the potential of their application in the psychiatric domain has not been well‐studied. Method In the first step, we compared the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in...
Gespeichert in:
Veröffentlicht in: | Psychiatry and clinical neurosciences 2024-06, Vol.78 (6), p.347-352 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 6 |
container_start_page | 347 |
container_title | Psychiatry and clinical neurosciences |
container_volume | 78 |
creator | Li, Dian‐Jeng Kao, Yu‐Chen Tsai, Shih‐Jen Bai, Ya‐Mei Yeh, Ta‐Chuan Chu, Che‐Sheng Hsu, Chih‐Wei Cheng, Szu‐Wei Hsu, Tien‐Wei Liang, Chih‐Sung Su, Kuan‐Pin |
description | Aim
Large language models (LLMs) have been suggested to play a role in medical education and medical practice. However, the potential of their application in the psychiatric domain has not been well‐studied.
Method
In the first step, we compared the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the 2022 Taiwan Psychiatric Licensing Examination conducted in traditional Mandarin. In the second step, we compared the scores of these three LLMs with those of 24 experienced psychiatrists in 10 advanced clinical scenario questions designed for psychiatric differential diagnosis.
Result
Only GPT‐4 passed the 2022 Taiwan Psychiatric Licensing Examination (scoring 69 and ≥ 60 being considered a passing grade), while Bard scored 36 and Llama‐2 scored 25. GPT‐4 outperformed Bard and Llama‐2, especially in the areas of ‘Pathophysiology & Epidemiology’ (χ2 = 22.4, P |
doi_str_mv | 10.1111/pcn.13656 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932025580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063316866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-3f6b06d0224abcd75a72095b566bd37eabfbf905c443462db639b81b45691f873</originalsourceid><addsrcrecordid>eNp1kU1u1DAYhiMEoqWw4ALIEhuQmtZ_8SRLiPonjWAWwzr67NgdV4kdbEfD7DgCV-FKnKTuTOkCCUuWP1vP-8jSWxRvCT4jeZ1Pyp0RJirxrDgmnOOS1KR5nmdGWUkYEUfFqxjvMMaMCfKyOGI1x5zy5rj43fpxgmDdLUobjSYdjA8jOKWRN6jdQLparVHef37-4qfoM4T-FIHr0XKAEfIjRdbto2uwW3BoFXdqYyEFq9DSKu3ig_viB4zWQbLe7dM501tjdNAuWRjyBW6djzairU0bNM5Dslme40kHND05Y4qvixcGhqjfPJ4nxbfLi3V7XS6_Xt20n5alYhUTJTNCYtFjSjlI1S8qWFDcVLISQvZsoUEaaRpcKc4ZF7SXgjWyJpJXoiGmXrCT4sPBOwX_fdYxdaONSg8DOO3n2NGGUUyrqsYZff8Peufn4PLvOoYFywXUQmTq44FSwccYtOmmYEcIu47g7qHHLvfY7XvM7LtH4yxH3T-Rf4vLwPkB2NpB7_5v6lbtl4PyHgcfqvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063316866</pqid></control><display><type>article</type><title>Comparing the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the Taiwan Psychiatric Licensing Examination and in differential diagnosis with multi‐center psychiatrists</title><source>Open Access Titles of Japan</source><source>Wiley Online Library All Journals</source><creator>Li, Dian‐Jeng ; Kao, Yu‐Chen ; Tsai, Shih‐Jen ; Bai, Ya‐Mei ; Yeh, Ta‐Chuan ; Chu, Che‐Sheng ; Hsu, Chih‐Wei ; Cheng, Szu‐Wei ; Hsu, Tien‐Wei ; Liang, Chih‐Sung ; Su, Kuan‐Pin</creator><creatorcontrib>Li, Dian‐Jeng ; Kao, Yu‐Chen ; Tsai, Shih‐Jen ; Bai, Ya‐Mei ; Yeh, Ta‐Chuan ; Chu, Che‐Sheng ; Hsu, Chih‐Wei ; Cheng, Szu‐Wei ; Hsu, Tien‐Wei ; Liang, Chih‐Sung ; Su, Kuan‐Pin</creatorcontrib><description>Aim
Large language models (LLMs) have been suggested to play a role in medical education and medical practice. However, the potential of their application in the psychiatric domain has not been well‐studied.
Method
In the first step, we compared the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the 2022 Taiwan Psychiatric Licensing Examination conducted in traditional Mandarin. In the second step, we compared the scores of these three LLMs with those of 24 experienced psychiatrists in 10 advanced clinical scenario questions designed for psychiatric differential diagnosis.
Result
Only GPT‐4 passed the 2022 Taiwan Psychiatric Licensing Examination (scoring 69 and ≥ 60 being considered a passing grade), while Bard scored 36 and Llama‐2 scored 25. GPT‐4 outperformed Bard and Llama‐2, especially in the areas of ‘Pathophysiology & Epidemiology’ (χ2 = 22.4, P < 0.001) and ‘Psychopharmacology & Other therapies’ (χ2 = 15.8, P < 0.001). In the differential diagnosis, the mean score of the 24 experienced psychiatrists (mean 6.1, standard deviation 1.9) was higher than that of GPT‐4 (5), Bard (3), and Llama‐2 (1).
Conclusion
Compared to Bard and Llama‐2, GPT‐4 demonstrated superior abilities in identifying psychiatric symptoms and making clinical judgments. Besides, GPT‐4's ability for differential diagnosis closely approached that of the experienced psychiatrists. GPT‐4 revealed a promising potential as a valuable tool in psychiatric practice among the three LLMs.</description><identifier>ISSN: 1323-1316</identifier><identifier>EISSN: 1440-1819</identifier><identifier>DOI: 10.1111/pcn.13656</identifier><identifier>PMID: 38404249</identifier><language>eng</language><publisher>Melbourne: John Wiley & Sons Australia, Ltd</publisher><subject>chatbot ; Chatbots ; ChatGPT ; Differential diagnosis ; differential diagnosis in psychiatry ; Epidemiology ; Licenses ; Licensing examinations ; psychiatric application ; Psychiatrists ; Taiwanese psychiatric licensing examination</subject><ispartof>Psychiatry and clinical neurosciences, 2024-06, Vol.78 (6), p.347-352</ispartof><rights>2024 The Authors. Psychiatry and Clinical Neurosciences © 2024 Japanese Society of Psychiatry and Neurology.</rights><rights>2024 Japanese Society of Psychiatry and Neurology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-3f6b06d0224abcd75a72095b566bd37eabfbf905c443462db639b81b45691f873</citedby><cites>FETCH-LOGICAL-c3536-3f6b06d0224abcd75a72095b566bd37eabfbf905c443462db639b81b45691f873</cites><orcidid>0000-0003-4136-1251 ; 0000-0002-8650-4060 ; 0000-0002-1016-3634 ; 0000-0002-4460-5517 ; 0000-0002-6036-045X ; 0000-0002-9987-022X ; 0000-0002-6911-1839 ; 0000-0003-3779-9074 ; 0000-0003-1138-5586 ; 0000-0002-4501-2502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpcn.13656$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpcn.13656$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38404249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Dian‐Jeng</creatorcontrib><creatorcontrib>Kao, Yu‐Chen</creatorcontrib><creatorcontrib>Tsai, Shih‐Jen</creatorcontrib><creatorcontrib>Bai, Ya‐Mei</creatorcontrib><creatorcontrib>Yeh, Ta‐Chuan</creatorcontrib><creatorcontrib>Chu, Che‐Sheng</creatorcontrib><creatorcontrib>Hsu, Chih‐Wei</creatorcontrib><creatorcontrib>Cheng, Szu‐Wei</creatorcontrib><creatorcontrib>Hsu, Tien‐Wei</creatorcontrib><creatorcontrib>Liang, Chih‐Sung</creatorcontrib><creatorcontrib>Su, Kuan‐Pin</creatorcontrib><title>Comparing the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the Taiwan Psychiatric Licensing Examination and in differential diagnosis with multi‐center psychiatrists</title><title>Psychiatry and clinical neurosciences</title><addtitle>Psychiatry Clin Neurosci</addtitle><description>Aim
Large language models (LLMs) have been suggested to play a role in medical education and medical practice. However, the potential of their application in the psychiatric domain has not been well‐studied.
Method
In the first step, we compared the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the 2022 Taiwan Psychiatric Licensing Examination conducted in traditional Mandarin. In the second step, we compared the scores of these three LLMs with those of 24 experienced psychiatrists in 10 advanced clinical scenario questions designed for psychiatric differential diagnosis.
Result
Only GPT‐4 passed the 2022 Taiwan Psychiatric Licensing Examination (scoring 69 and ≥ 60 being considered a passing grade), while Bard scored 36 and Llama‐2 scored 25. GPT‐4 outperformed Bard and Llama‐2, especially in the areas of ‘Pathophysiology & Epidemiology’ (χ2 = 22.4, P < 0.001) and ‘Psychopharmacology & Other therapies’ (χ2 = 15.8, P < 0.001). In the differential diagnosis, the mean score of the 24 experienced psychiatrists (mean 6.1, standard deviation 1.9) was higher than that of GPT‐4 (5), Bard (3), and Llama‐2 (1).
Conclusion
Compared to Bard and Llama‐2, GPT‐4 demonstrated superior abilities in identifying psychiatric symptoms and making clinical judgments. Besides, GPT‐4's ability for differential diagnosis closely approached that of the experienced psychiatrists. GPT‐4 revealed a promising potential as a valuable tool in psychiatric practice among the three LLMs.</description><subject>chatbot</subject><subject>Chatbots</subject><subject>ChatGPT</subject><subject>Differential diagnosis</subject><subject>differential diagnosis in psychiatry</subject><subject>Epidemiology</subject><subject>Licenses</subject><subject>Licensing examinations</subject><subject>psychiatric application</subject><subject>Psychiatrists</subject><subject>Taiwanese psychiatric licensing examination</subject><issn>1323-1316</issn><issn>1440-1819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1u1DAYhiMEoqWw4ALIEhuQmtZ_8SRLiPonjWAWwzr67NgdV4kdbEfD7DgCV-FKnKTuTOkCCUuWP1vP-8jSWxRvCT4jeZ1Pyp0RJirxrDgmnOOS1KR5nmdGWUkYEUfFqxjvMMaMCfKyOGI1x5zy5rj43fpxgmDdLUobjSYdjA8jOKWRN6jdQLparVHef37-4qfoM4T-FIHr0XKAEfIjRdbto2uwW3BoFXdqYyEFq9DSKu3ig_viB4zWQbLe7dM501tjdNAuWRjyBW6djzairU0bNM5Dslme40kHND05Y4qvixcGhqjfPJ4nxbfLi3V7XS6_Xt20n5alYhUTJTNCYtFjSjlI1S8qWFDcVLISQvZsoUEaaRpcKc4ZF7SXgjWyJpJXoiGmXrCT4sPBOwX_fdYxdaONSg8DOO3n2NGGUUyrqsYZff8Peufn4PLvOoYFywXUQmTq44FSwccYtOmmYEcIu47g7qHHLvfY7XvM7LtH4yxH3T-Rf4vLwPkB2NpB7_5v6lbtl4PyHgcfqvM</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Li, Dian‐Jeng</creator><creator>Kao, Yu‐Chen</creator><creator>Tsai, Shih‐Jen</creator><creator>Bai, Ya‐Mei</creator><creator>Yeh, Ta‐Chuan</creator><creator>Chu, Che‐Sheng</creator><creator>Hsu, Chih‐Wei</creator><creator>Cheng, Szu‐Wei</creator><creator>Hsu, Tien‐Wei</creator><creator>Liang, Chih‐Sung</creator><creator>Su, Kuan‐Pin</creator><general>John Wiley & Sons Australia, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4136-1251</orcidid><orcidid>https://orcid.org/0000-0002-8650-4060</orcidid><orcidid>https://orcid.org/0000-0002-1016-3634</orcidid><orcidid>https://orcid.org/0000-0002-4460-5517</orcidid><orcidid>https://orcid.org/0000-0002-6036-045X</orcidid><orcidid>https://orcid.org/0000-0002-9987-022X</orcidid><orcidid>https://orcid.org/0000-0002-6911-1839</orcidid><orcidid>https://orcid.org/0000-0003-3779-9074</orcidid><orcidid>https://orcid.org/0000-0003-1138-5586</orcidid><orcidid>https://orcid.org/0000-0002-4501-2502</orcidid></search><sort><creationdate>202406</creationdate><title>Comparing the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the Taiwan Psychiatric Licensing Examination and in differential diagnosis with multi‐center psychiatrists</title><author>Li, Dian‐Jeng ; Kao, Yu‐Chen ; Tsai, Shih‐Jen ; Bai, Ya‐Mei ; Yeh, Ta‐Chuan ; Chu, Che‐Sheng ; Hsu, Chih‐Wei ; Cheng, Szu‐Wei ; Hsu, Tien‐Wei ; Liang, Chih‐Sung ; Su, Kuan‐Pin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-3f6b06d0224abcd75a72095b566bd37eabfbf905c443462db639b81b45691f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chatbot</topic><topic>Chatbots</topic><topic>ChatGPT</topic><topic>Differential diagnosis</topic><topic>differential diagnosis in psychiatry</topic><topic>Epidemiology</topic><topic>Licenses</topic><topic>Licensing examinations</topic><topic>psychiatric application</topic><topic>Psychiatrists</topic><topic>Taiwanese psychiatric licensing examination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dian‐Jeng</creatorcontrib><creatorcontrib>Kao, Yu‐Chen</creatorcontrib><creatorcontrib>Tsai, Shih‐Jen</creatorcontrib><creatorcontrib>Bai, Ya‐Mei</creatorcontrib><creatorcontrib>Yeh, Ta‐Chuan</creatorcontrib><creatorcontrib>Chu, Che‐Sheng</creatorcontrib><creatorcontrib>Hsu, Chih‐Wei</creatorcontrib><creatorcontrib>Cheng, Szu‐Wei</creatorcontrib><creatorcontrib>Hsu, Tien‐Wei</creatorcontrib><creatorcontrib>Liang, Chih‐Sung</creatorcontrib><creatorcontrib>Su, Kuan‐Pin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Psychiatry and clinical neurosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dian‐Jeng</au><au>Kao, Yu‐Chen</au><au>Tsai, Shih‐Jen</au><au>Bai, Ya‐Mei</au><au>Yeh, Ta‐Chuan</au><au>Chu, Che‐Sheng</au><au>Hsu, Chih‐Wei</au><au>Cheng, Szu‐Wei</au><au>Hsu, Tien‐Wei</au><au>Liang, Chih‐Sung</au><au>Su, Kuan‐Pin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the Taiwan Psychiatric Licensing Examination and in differential diagnosis with multi‐center psychiatrists</atitle><jtitle>Psychiatry and clinical neurosciences</jtitle><addtitle>Psychiatry Clin Neurosci</addtitle><date>2024-06</date><risdate>2024</risdate><volume>78</volume><issue>6</issue><spage>347</spage><epage>352</epage><pages>347-352</pages><issn>1323-1316</issn><eissn>1440-1819</eissn><abstract>Aim
Large language models (LLMs) have been suggested to play a role in medical education and medical practice. However, the potential of their application in the psychiatric domain has not been well‐studied.
Method
In the first step, we compared the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the 2022 Taiwan Psychiatric Licensing Examination conducted in traditional Mandarin. In the second step, we compared the scores of these three LLMs with those of 24 experienced psychiatrists in 10 advanced clinical scenario questions designed for psychiatric differential diagnosis.
Result
Only GPT‐4 passed the 2022 Taiwan Psychiatric Licensing Examination (scoring 69 and ≥ 60 being considered a passing grade), while Bard scored 36 and Llama‐2 scored 25. GPT‐4 outperformed Bard and Llama‐2, especially in the areas of ‘Pathophysiology & Epidemiology’ (χ2 = 22.4, P < 0.001) and ‘Psychopharmacology & Other therapies’ (χ2 = 15.8, P < 0.001). In the differential diagnosis, the mean score of the 24 experienced psychiatrists (mean 6.1, standard deviation 1.9) was higher than that of GPT‐4 (5), Bard (3), and Llama‐2 (1).
Conclusion
Compared to Bard and Llama‐2, GPT‐4 demonstrated superior abilities in identifying psychiatric symptoms and making clinical judgments. Besides, GPT‐4's ability for differential diagnosis closely approached that of the experienced psychiatrists. GPT‐4 revealed a promising potential as a valuable tool in psychiatric practice among the three LLMs.</abstract><cop>Melbourne</cop><pub>John Wiley & Sons Australia, Ltd</pub><pmid>38404249</pmid><doi>10.1111/pcn.13656</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4136-1251</orcidid><orcidid>https://orcid.org/0000-0002-8650-4060</orcidid><orcidid>https://orcid.org/0000-0002-1016-3634</orcidid><orcidid>https://orcid.org/0000-0002-4460-5517</orcidid><orcidid>https://orcid.org/0000-0002-6036-045X</orcidid><orcidid>https://orcid.org/0000-0002-9987-022X</orcidid><orcidid>https://orcid.org/0000-0002-6911-1839</orcidid><orcidid>https://orcid.org/0000-0003-3779-9074</orcidid><orcidid>https://orcid.org/0000-0003-1138-5586</orcidid><orcidid>https://orcid.org/0000-0002-4501-2502</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1323-1316 |
ispartof | Psychiatry and clinical neurosciences, 2024-06, Vol.78 (6), p.347-352 |
issn | 1323-1316 1440-1819 |
language | eng |
recordid | cdi_proquest_miscellaneous_2932025580 |
source | Open Access Titles of Japan; Wiley Online Library All Journals |
subjects | chatbot Chatbots ChatGPT Differential diagnosis differential diagnosis in psychiatry Epidemiology Licenses Licensing examinations psychiatric application Psychiatrists Taiwanese psychiatric licensing examination |
title | Comparing the performance of ChatGPT GPT‐4, Bard, and Llama‐2 in the Taiwan Psychiatric Licensing Examination and in differential diagnosis with multi‐center psychiatrists |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20performance%20of%20ChatGPT%20GPT%E2%80%904,%20Bard,%20and%20Llama%E2%80%902%20in%20the%20Taiwan%20Psychiatric%20Licensing%20Examination%20and%20in%20differential%20diagnosis%20with%20multi%E2%80%90center%20psychiatrists&rft.jtitle=Psychiatry%20and%20clinical%20neurosciences&rft.au=Li,%20Dian%E2%80%90Jeng&rft.date=2024-06&rft.volume=78&rft.issue=6&rft.spage=347&rft.epage=352&rft.pages=347-352&rft.issn=1323-1316&rft.eissn=1440-1819&rft_id=info:doi/10.1111/pcn.13656&rft_dat=%3Cproquest_cross%3E3063316866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063316866&rft_id=info:pmid/38404249&rfr_iscdi=true |