Development of guar gum reinforced calcium magnesium phosphate‐based bone biocement
This study aims at developing a calcium magnesium phosphate‐based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gu...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-03, Vol.112 (3), p.e35384-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e35384 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 112 |
creator | Goenka, Vidul V. K., Anupama Devi Manikandan, Ceera Jaiswal, Amit Kumar |
description | This study aims at developing a calcium magnesium phosphate‐based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum‐reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels. |
doi_str_mv | 10.1002/jbm.b.35384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932019181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932019181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3184-b33914a861676f7802f4fcb8eca00e77820e15d98e9fd749695d543927ad6c8d3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgiveVeym4EWTGXJomWTreRXGj65Ckp9qhbWoyVdz5CD6jT2LGURcu3JwcwsfP4Udoh-AxwZgeTm07tmPGmcyX0DrhnI5yJcny7y7YGtqIcZpwgTlbRWuJYiyUXEf3J_AMje9b6GaZr7KHwYQ02ixA3VU-OCgzZxpXp6_WPHQQ51v_6GP_aGbw8fZuTUzG-g4yW3sH86QttFKZJsL297uJ7s9O744vRte355fHR9cjx4jMR5YxRXIjC1KIohIS0yqvnJXgDMYghKQYCC-VBFWVIleF4iXPmaLClIWTJdtE-4vcPvinAeJMt3V00DSmAz9ETRWjmCgiSaJ7f-jUD6FL1yXFBckV5jSpg4VywccYoNJ9qFsTXjXBet62Tm1rq7_aTnr3O3OwLZS_9qfeBOgCvNQNvP6Xpa8mN5NF6icB-4rb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957149052</pqid></control><display><type>article</type><title>Development of guar gum reinforced calcium magnesium phosphate‐based bone biocement</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Goenka, Vidul ; V. K., Anupama Devi ; Manikandan, Ceera ; Jaiswal, Amit Kumar</creator><creatorcontrib>Goenka, Vidul ; V. K., Anupama Devi ; Manikandan, Ceera ; Jaiswal, Amit Kumar</creatorcontrib><description>This study aims at developing a calcium magnesium phosphate‐based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum‐reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels.</description><identifier>ISSN: 1552-4973</identifier><identifier>ISSN: 1552-4981</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35384</identifier><identifier>PMID: 38400798</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>bone biocement ; Calcium ; calcium magnesium phosphate ; Calcium phosphates ; Galactans - chemistry ; Guar gum ; Gums ; Magnesium ; Magnesium phosphate ; Mannans - chemistry ; Mechanical properties ; Natural polymers ; oxidized guar gum ; Phosphates ; Plant Gums ; polydopamine binder solution ; Polymers ; Porosity</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2024-03, Vol.112 (3), p.e35384-n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3184-b33914a861676f7802f4fcb8eca00e77820e15d98e9fd749695d543927ad6c8d3</cites><orcidid>0000-0003-4112-6710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.35384$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.35384$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38400798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goenka, Vidul</creatorcontrib><creatorcontrib>V. K., Anupama Devi</creatorcontrib><creatorcontrib>Manikandan, Ceera</creatorcontrib><creatorcontrib>Jaiswal, Amit Kumar</creatorcontrib><title>Development of guar gum reinforced calcium magnesium phosphate‐based bone biocement</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>This study aims at developing a calcium magnesium phosphate‐based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum‐reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels.</description><subject>bone biocement</subject><subject>Calcium</subject><subject>calcium magnesium phosphate</subject><subject>Calcium phosphates</subject><subject>Galactans - chemistry</subject><subject>Guar gum</subject><subject>Gums</subject><subject>Magnesium</subject><subject>Magnesium phosphate</subject><subject>Mannans - chemistry</subject><subject>Mechanical properties</subject><subject>Natural polymers</subject><subject>oxidized guar gum</subject><subject>Phosphates</subject><subject>Plant Gums</subject><subject>polydopamine binder solution</subject><subject>Polymers</subject><subject>Porosity</subject><issn>1552-4973</issn><issn>1552-4981</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKxDAUBuAgiveVeym4EWTGXJomWTreRXGj65Ckp9qhbWoyVdz5CD6jT2LGURcu3JwcwsfP4Udoh-AxwZgeTm07tmPGmcyX0DrhnI5yJcny7y7YGtqIcZpwgTlbRWuJYiyUXEf3J_AMje9b6GaZr7KHwYQ02ixA3VU-OCgzZxpXp6_WPHQQ51v_6GP_aGbw8fZuTUzG-g4yW3sH86QttFKZJsL297uJ7s9O744vRte355fHR9cjx4jMR5YxRXIjC1KIohIS0yqvnJXgDMYghKQYCC-VBFWVIleF4iXPmaLClIWTJdtE-4vcPvinAeJMt3V00DSmAz9ETRWjmCgiSaJ7f-jUD6FL1yXFBckV5jSpg4VywccYoNJ9qFsTXjXBet62Tm1rq7_aTnr3O3OwLZS_9qfeBOgCvNQNvP6Xpa8mN5NF6icB-4rb</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Goenka, Vidul</creator><creator>V. K., Anupama Devi</creator><creator>Manikandan, Ceera</creator><creator>Jaiswal, Amit Kumar</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4112-6710</orcidid></search><sort><creationdate>202403</creationdate><title>Development of guar gum reinforced calcium magnesium phosphate‐based bone biocement</title><author>Goenka, Vidul ; V. K., Anupama Devi ; Manikandan, Ceera ; Jaiswal, Amit Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3184-b33914a861676f7802f4fcb8eca00e77820e15d98e9fd749695d543927ad6c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bone biocement</topic><topic>Calcium</topic><topic>calcium magnesium phosphate</topic><topic>Calcium phosphates</topic><topic>Galactans - chemistry</topic><topic>Guar gum</topic><topic>Gums</topic><topic>Magnesium</topic><topic>Magnesium phosphate</topic><topic>Mannans - chemistry</topic><topic>Mechanical properties</topic><topic>Natural polymers</topic><topic>oxidized guar gum</topic><topic>Phosphates</topic><topic>Plant Gums</topic><topic>polydopamine binder solution</topic><topic>Polymers</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goenka, Vidul</creatorcontrib><creatorcontrib>V. K., Anupama Devi</creatorcontrib><creatorcontrib>Manikandan, Ceera</creatorcontrib><creatorcontrib>Jaiswal, Amit Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goenka, Vidul</au><au>V. K., Anupama Devi</au><au>Manikandan, Ceera</au><au>Jaiswal, Amit Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of guar gum reinforced calcium magnesium phosphate‐based bone biocement</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2024-03</date><risdate>2024</risdate><volume>112</volume><issue>3</issue><spage>e35384</spage><epage>n/a</epage><pages>e35384-n/a</pages><issn>1552-4973</issn><issn>1552-4981</issn><eissn>1552-4981</eissn><abstract>This study aims at developing a calcium magnesium phosphate‐based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum‐reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38400798</pmid><doi>10.1002/jbm.b.35384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4112-6710</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2024-03, Vol.112 (3), p.e35384-n/a |
issn | 1552-4973 1552-4981 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2932019181 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | bone biocement Calcium calcium magnesium phosphate Calcium phosphates Galactans - chemistry Guar gum Gums Magnesium Magnesium phosphate Mannans - chemistry Mechanical properties Natural polymers oxidized guar gum Phosphates Plant Gums polydopamine binder solution Polymers Porosity |
title | Development of guar gum reinforced calcium magnesium phosphate‐based bone biocement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20guar%20gum%20reinforced%20calcium%20magnesium%20phosphate%E2%80%90based%20bone%20biocement&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Goenka,%20Vidul&rft.date=2024-03&rft.volume=112&rft.issue=3&rft.spage=e35384&rft.epage=n/a&rft.pages=e35384-n/a&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35384&rft_dat=%3Cproquest_cross%3E2932019181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957149052&rft_id=info:pmid/38400798&rfr_iscdi=true |