Artificial Intelligence in Radiology: Opportunities and Challenges
Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Rad...
Gespeichert in:
Veröffentlicht in: | Seminars in ultrasound, CT, and MRI CT, and MRI, 2024-04, Vol.45 (2), p.152-160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 2 |
container_start_page | 152 |
container_title | Seminars in ultrasound, CT, and MRI |
container_volume | 45 |
creator | Flory, Marta N. Napel, Sandy Tsai, Emily B. |
description | Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process – from algorithm initiation and design to development and implementation – to maximize benefit and minimize harm that can be enabled by this technology. |
doi_str_mv | 10.1053/j.sult.2024.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932018178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0887217124000052</els_id><sourcerecordid>2932018178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-df92c3377c4e5ab445fe1d1d5fd371d8a30e0cb81d3f180d104c8bdc23459c383</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRbH38AReSpZvEOy8zFTe1-CgUCqLrYTJzU6ekSZ1JhP57E1pdurqb7xzO_Qi5opBRkPx2ncWuajMGTGTAMgBxRMZUSpVK4OKYjEGpPGU0pyNyFuMagOUTeXdKRlwJ4JSpMXmchtaX3npTJfO6xaryK6wtJr5O3ozzTdWsdvfJcrttQtvVvvUYE1O7ZPZpqgrrFcYLclKaKuLl4Z6Tj-en99lruli-zGfTRWo55G3qygmznOe5FShNIYQskTrqZOl4Tp0yHBBsoajjJVXgKAirCmcZF3JiueLn5Gbfuw3NV4ex1Rsfbb_Y1Nh0UbMJZ0AVzQeU7VEbmhgDlnob_MaEnaagB3d6rQd3enCngeneXR-6PvR3xQbdX-RXVg887AHsv_z2GHS0fpDlfEDbatf4__p_AO0cgDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932018178</pqid></control><display><type>article</type><title>Artificial Intelligence in Radiology: Opportunities and Challenges</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Flory, Marta N. ; Napel, Sandy ; Tsai, Emily B.</creator><creatorcontrib>Flory, Marta N. ; Napel, Sandy ; Tsai, Emily B.</creatorcontrib><description>Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process – from algorithm initiation and design to development and implementation – to maximize benefit and minimize harm that can be enabled by this technology.</description><identifier>ISSN: 0887-2171</identifier><identifier>ISSN: 1558-5034</identifier><identifier>EISSN: 1558-5034</identifier><identifier>DOI: 10.1053/j.sult.2024.02.004</identifier><identifier>PMID: 38403128</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Diagnostic Imaging - methods ; Humans ; Radiology - methods</subject><ispartof>Seminars in ultrasound, CT, and MRI, 2024-04, Vol.45 (2), p.152-160</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-df92c3377c4e5ab445fe1d1d5fd371d8a30e0cb81d3f180d104c8bdc23459c383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0887217124000052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38403128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flory, Marta N.</creatorcontrib><creatorcontrib>Napel, Sandy</creatorcontrib><creatorcontrib>Tsai, Emily B.</creatorcontrib><title>Artificial Intelligence in Radiology: Opportunities and Challenges</title><title>Seminars in ultrasound, CT, and MRI</title><addtitle>Semin Ultrasound CT MR</addtitle><description>Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process – from algorithm initiation and design to development and implementation – to maximize benefit and minimize harm that can be enabled by this technology.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Diagnostic Imaging - methods</subject><subject>Humans</subject><subject>Radiology - methods</subject><issn>0887-2171</issn><issn>1558-5034</issn><issn>1558-5034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLw0AUhQdRbH38AReSpZvEOy8zFTe1-CgUCqLrYTJzU6ekSZ1JhP57E1pdurqb7xzO_Qi5opBRkPx2ncWuajMGTGTAMgBxRMZUSpVK4OKYjEGpPGU0pyNyFuMagOUTeXdKRlwJ4JSpMXmchtaX3npTJfO6xaryK6wtJr5O3ozzTdWsdvfJcrttQtvVvvUYE1O7ZPZpqgrrFcYLclKaKuLl4Z6Tj-en99lruli-zGfTRWo55G3qygmznOe5FShNIYQskTrqZOl4Tp0yHBBsoajjJVXgKAirCmcZF3JiueLn5Gbfuw3NV4ex1Rsfbb_Y1Nh0UbMJZ0AVzQeU7VEbmhgDlnob_MaEnaagB3d6rQd3enCngeneXR-6PvR3xQbdX-RXVg887AHsv_z2GHS0fpDlfEDbatf4__p_AO0cgDc</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Flory, Marta N.</creator><creator>Napel, Sandy</creator><creator>Tsai, Emily B.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202404</creationdate><title>Artificial Intelligence in Radiology: Opportunities and Challenges</title><author>Flory, Marta N. ; Napel, Sandy ; Tsai, Emily B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-df92c3377c4e5ab445fe1d1d5fd371d8a30e0cb81d3f180d104c8bdc23459c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Diagnostic Imaging - methods</topic><topic>Humans</topic><topic>Radiology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flory, Marta N.</creatorcontrib><creatorcontrib>Napel, Sandy</creatorcontrib><creatorcontrib>Tsai, Emily B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Seminars in ultrasound, CT, and MRI</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flory, Marta N.</au><au>Napel, Sandy</au><au>Tsai, Emily B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence in Radiology: Opportunities and Challenges</atitle><jtitle>Seminars in ultrasound, CT, and MRI</jtitle><addtitle>Semin Ultrasound CT MR</addtitle><date>2024-04</date><risdate>2024</risdate><volume>45</volume><issue>2</issue><spage>152</spage><epage>160</epage><pages>152-160</pages><issn>0887-2171</issn><issn>1558-5034</issn><eissn>1558-5034</eissn><abstract>Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process – from algorithm initiation and design to development and implementation – to maximize benefit and minimize harm that can be enabled by this technology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38403128</pmid><doi>10.1053/j.sult.2024.02.004</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-2171 |
ispartof | Seminars in ultrasound, CT, and MRI, 2024-04, Vol.45 (2), p.152-160 |
issn | 0887-2171 1558-5034 1558-5034 |
language | eng |
recordid | cdi_proquest_miscellaneous_2932018178 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Artificial Intelligence Diagnostic Imaging - methods Humans Radiology - methods |
title | Artificial Intelligence in Radiology: Opportunities and Challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20in%20Radiology:%20Opportunities%20and%20Challenges&rft.jtitle=Seminars%20in%20ultrasound,%20CT,%20and%20MRI&rft.au=Flory,%20Marta%20N.&rft.date=2024-04&rft.volume=45&rft.issue=2&rft.spage=152&rft.epage=160&rft.pages=152-160&rft.issn=0887-2171&rft.eissn=1558-5034&rft_id=info:doi/10.1053/j.sult.2024.02.004&rft_dat=%3Cproquest_cross%3E2932018178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932018178&rft_id=info:pmid/38403128&rft_els_id=S0887217124000052&rfr_iscdi=true |