Artificial Intelligence in Radiology: Opportunities and Challenges

Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in ultrasound, CT, and MRI CT, and MRI, 2024-04, Vol.45 (2), p.152-160
Hauptverfasser: Flory, Marta N., Napel, Sandy, Tsai, Emily B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 2
container_start_page 152
container_title Seminars in ultrasound, CT, and MRI
container_volume 45
creator Flory, Marta N.
Napel, Sandy
Tsai, Emily B.
description Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process – from algorithm initiation and design to development and implementation – to maximize benefit and minimize harm that can be enabled by this technology.
doi_str_mv 10.1053/j.sult.2024.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932018178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0887217124000052</els_id><sourcerecordid>2932018178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-df92c3377c4e5ab445fe1d1d5fd371d8a30e0cb81d3f180d104c8bdc23459c383</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRbH38AReSpZvEOy8zFTe1-CgUCqLrYTJzU6ekSZ1JhP57E1pdurqb7xzO_Qi5opBRkPx2ncWuajMGTGTAMgBxRMZUSpVK4OKYjEGpPGU0pyNyFuMagOUTeXdKRlwJ4JSpMXmchtaX3npTJfO6xaryK6wtJr5O3ozzTdWsdvfJcrttQtvVvvUYE1O7ZPZpqgrrFcYLclKaKuLl4Z6Tj-en99lruli-zGfTRWo55G3qygmznOe5FShNIYQskTrqZOl4Tp0yHBBsoajjJVXgKAirCmcZF3JiueLn5Gbfuw3NV4ex1Rsfbb_Y1Nh0UbMJZ0AVzQeU7VEbmhgDlnob_MaEnaagB3d6rQd3enCngeneXR-6PvR3xQbdX-RXVg887AHsv_z2GHS0fpDlfEDbatf4__p_AO0cgDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932018178</pqid></control><display><type>article</type><title>Artificial Intelligence in Radiology: Opportunities and Challenges</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Flory, Marta N. ; Napel, Sandy ; Tsai, Emily B.</creator><creatorcontrib>Flory, Marta N. ; Napel, Sandy ; Tsai, Emily B.</creatorcontrib><description>Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process – from algorithm initiation and design to development and implementation – to maximize benefit and minimize harm that can be enabled by this technology.</description><identifier>ISSN: 0887-2171</identifier><identifier>ISSN: 1558-5034</identifier><identifier>EISSN: 1558-5034</identifier><identifier>DOI: 10.1053/j.sult.2024.02.004</identifier><identifier>PMID: 38403128</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Diagnostic Imaging - methods ; Humans ; Radiology - methods</subject><ispartof>Seminars in ultrasound, CT, and MRI, 2024-04, Vol.45 (2), p.152-160</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-df92c3377c4e5ab445fe1d1d5fd371d8a30e0cb81d3f180d104c8bdc23459c383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0887217124000052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38403128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flory, Marta N.</creatorcontrib><creatorcontrib>Napel, Sandy</creatorcontrib><creatorcontrib>Tsai, Emily B.</creatorcontrib><title>Artificial Intelligence in Radiology: Opportunities and Challenges</title><title>Seminars in ultrasound, CT, and MRI</title><addtitle>Semin Ultrasound CT MR</addtitle><description>Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process – from algorithm initiation and design to development and implementation – to maximize benefit and minimize harm that can be enabled by this technology.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Diagnostic Imaging - methods</subject><subject>Humans</subject><subject>Radiology - methods</subject><issn>0887-2171</issn><issn>1558-5034</issn><issn>1558-5034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLw0AUhQdRbH38AReSpZvEOy8zFTe1-CgUCqLrYTJzU6ekSZ1JhP57E1pdurqb7xzO_Qi5opBRkPx2ncWuajMGTGTAMgBxRMZUSpVK4OKYjEGpPGU0pyNyFuMagOUTeXdKRlwJ4JSpMXmchtaX3npTJfO6xaryK6wtJr5O3ozzTdWsdvfJcrttQtvVvvUYE1O7ZPZpqgrrFcYLclKaKuLl4Z6Tj-en99lruli-zGfTRWo55G3qygmznOe5FShNIYQskTrqZOl4Tp0yHBBsoajjJVXgKAirCmcZF3JiueLn5Gbfuw3NV4ex1Rsfbb_Y1Nh0UbMJZ0AVzQeU7VEbmhgDlnob_MaEnaagB3d6rQd3enCngeneXR-6PvR3xQbdX-RXVg887AHsv_z2GHS0fpDlfEDbatf4__p_AO0cgDc</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Flory, Marta N.</creator><creator>Napel, Sandy</creator><creator>Tsai, Emily B.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202404</creationdate><title>Artificial Intelligence in Radiology: Opportunities and Challenges</title><author>Flory, Marta N. ; Napel, Sandy ; Tsai, Emily B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-df92c3377c4e5ab445fe1d1d5fd371d8a30e0cb81d3f180d104c8bdc23459c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Diagnostic Imaging - methods</topic><topic>Humans</topic><topic>Radiology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flory, Marta N.</creatorcontrib><creatorcontrib>Napel, Sandy</creatorcontrib><creatorcontrib>Tsai, Emily B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Seminars in ultrasound, CT, and MRI</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flory, Marta N.</au><au>Napel, Sandy</au><au>Tsai, Emily B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence in Radiology: Opportunities and Challenges</atitle><jtitle>Seminars in ultrasound, CT, and MRI</jtitle><addtitle>Semin Ultrasound CT MR</addtitle><date>2024-04</date><risdate>2024</risdate><volume>45</volume><issue>2</issue><spage>152</spage><epage>160</epage><pages>152-160</pages><issn>0887-2171</issn><issn>1558-5034</issn><eissn>1558-5034</eissn><abstract>Artificial intelligence’s (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process – from algorithm initiation and design to development and implementation – to maximize benefit and minimize harm that can be enabled by this technology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38403128</pmid><doi>10.1053/j.sult.2024.02.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-2171
ispartof Seminars in ultrasound, CT, and MRI, 2024-04, Vol.45 (2), p.152-160
issn 0887-2171
1558-5034
1558-5034
language eng
recordid cdi_proquest_miscellaneous_2932018178
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Artificial Intelligence
Diagnostic Imaging - methods
Humans
Radiology - methods
title Artificial Intelligence in Radiology: Opportunities and Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20in%20Radiology:%20Opportunities%20and%20Challenges&rft.jtitle=Seminars%20in%20ultrasound,%20CT,%20and%20MRI&rft.au=Flory,%20Marta%20N.&rft.date=2024-04&rft.volume=45&rft.issue=2&rft.spage=152&rft.epage=160&rft.pages=152-160&rft.issn=0887-2171&rft.eissn=1558-5034&rft_id=info:doi/10.1053/j.sult.2024.02.004&rft_dat=%3Cproquest_cross%3E2932018178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932018178&rft_id=info:pmid/38403128&rft_els_id=S0887217124000052&rfr_iscdi=true