Drug Mechanism: A bioinformatic update

[Display omitted] A drug Mechanism of Action (MoA) is a complex biological phenomenon that describes how a bioactive compound produces a pharmacological effect. The complete knowledge of MoA is fundamental to fully understanding the drug activity. Over the years, many experimental methods have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2024-10, Vol.228, p.116078, Article 116078
Hauptverfasser: Cirinciani, Martina, Da Pozzo, Eleonora, Trincavelli, Maria Letizia, Milazzo, Paolo, Martini, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116078
container_title Biochemical pharmacology
container_volume 228
creator Cirinciani, Martina
Da Pozzo, Eleonora
Trincavelli, Maria Letizia
Milazzo, Paolo
Martini, Claudia
description [Display omitted] A drug Mechanism of Action (MoA) is a complex biological phenomenon that describes how a bioactive compound produces a pharmacological effect. The complete knowledge of MoA is fundamental to fully understanding the drug activity. Over the years, many experimental methods have been developed and a huge quantity of data has been produced. Nowadays, considering the increasing omics data availability and the improvement of the accessible computational resources, the study of a drug MoA is conducted by integrating experimental and bioinformatics approaches. The development of new in silico solutions for this type of analysis is continuously ongoing; herein, an updating review on such bioinformatic methods is presented. The methodologies cited are based on multi-omics data integration in biochemical networks and Machine Learning (ML). The multiple types of usable input data and the advantages and disadvantages of each method have been analyzed, with a focus on their applications. Three specific research areas (i.e. cancer drug development, antibiotics discovery, and drug repurposing) have been chosen for their importance in the drug discovery fields in which the study of drug MoA, through novel bioinformatics approaches, is particularly productive.
doi_str_mv 10.1016/j.bcp.2024.116078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932018171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295224000613</els_id><sourcerecordid>2932018171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-a5d3ede213a4b1dfbe92f803b604021f7c3e91ac847fe43e992ab9f1ff4b50c43</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EoqXwA7ignBCXBK-dhwOnqjylIi5wtmxnDa6aB3aCxL8nVYAjp52VZma1HyGnQBOgkF9uEm26hFGWJgA5LcQemYMoeMzKXOyTOaU0H3XGZuQohM1uFTkckhkXKWUlLefk_MYPb9ETmnfVuFBfRctIu9Y1tvW16p2Jhq5SPR6TA6u2AU9-5oK83t2-rB7i9fP942q5jg2nWR-rrOJYIQOuUg2V1VgyKyjXOR0Pgi0MxxKUEWlhMR11yZQuLVib6oyalC_IxdTb-fZjwNDL2gWD261qsB2CZCVnFAQUMFphshrfhuDRys67WvkvCVTu8MiNHPHIHR454RkzZz_1g66x-kv88hgN15MBxyc_HXoZjMPGYOU8ml5Wrfun_hu7N3Or</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932018171</pqid></control><display><type>article</type><title>Drug Mechanism: A bioinformatic update</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cirinciani, Martina ; Da Pozzo, Eleonora ; Trincavelli, Maria Letizia ; Milazzo, Paolo ; Martini, Claudia</creator><creatorcontrib>Cirinciani, Martina ; Da Pozzo, Eleonora ; Trincavelli, Maria Letizia ; Milazzo, Paolo ; Martini, Claudia</creatorcontrib><description>[Display omitted] A drug Mechanism of Action (MoA) is a complex biological phenomenon that describes how a bioactive compound produces a pharmacological effect. The complete knowledge of MoA is fundamental to fully understanding the drug activity. Over the years, many experimental methods have been developed and a huge quantity of data has been produced. Nowadays, considering the increasing omics data availability and the improvement of the accessible computational resources, the study of a drug MoA is conducted by integrating experimental and bioinformatics approaches. The development of new in silico solutions for this type of analysis is continuously ongoing; herein, an updating review on such bioinformatic methods is presented. The methodologies cited are based on multi-omics data integration in biochemical networks and Machine Learning (ML). The multiple types of usable input data and the advantages and disadvantages of each method have been analyzed, with a focus on their applications. Three specific research areas (i.e. cancer drug development, antibiotics discovery, and drug repurposing) have been chosen for their importance in the drug discovery fields in which the study of drug MoA, through novel bioinformatics approaches, is particularly productive.</description><identifier>ISSN: 0006-2952</identifier><identifier>ISSN: 1873-2968</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2024.116078</identifier><identifier>PMID: 38402909</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Bioinformatics ; Drug development ; Drug Mechanism of Action ; Machine Learning ; Omics data ; Systems Biology</subject><ispartof>Biochemical pharmacology, 2024-10, Vol.228, p.116078, Article 116078</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-a5d3ede213a4b1dfbe92f803b604021f7c3e91ac847fe43e992ab9f1ff4b50c43</cites><orcidid>0000-0001-9379-3027 ; 0009-0008-4209-761X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bcp.2024.116078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38402909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cirinciani, Martina</creatorcontrib><creatorcontrib>Da Pozzo, Eleonora</creatorcontrib><creatorcontrib>Trincavelli, Maria Letizia</creatorcontrib><creatorcontrib>Milazzo, Paolo</creatorcontrib><creatorcontrib>Martini, Claudia</creatorcontrib><title>Drug Mechanism: A bioinformatic update</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>[Display omitted] A drug Mechanism of Action (MoA) is a complex biological phenomenon that describes how a bioactive compound produces a pharmacological effect. The complete knowledge of MoA is fundamental to fully understanding the drug activity. Over the years, many experimental methods have been developed and a huge quantity of data has been produced. Nowadays, considering the increasing omics data availability and the improvement of the accessible computational resources, the study of a drug MoA is conducted by integrating experimental and bioinformatics approaches. The development of new in silico solutions for this type of analysis is continuously ongoing; herein, an updating review on such bioinformatic methods is presented. The methodologies cited are based on multi-omics data integration in biochemical networks and Machine Learning (ML). The multiple types of usable input data and the advantages and disadvantages of each method have been analyzed, with a focus on their applications. Three specific research areas (i.e. cancer drug development, antibiotics discovery, and drug repurposing) have been chosen for their importance in the drug discovery fields in which the study of drug MoA, through novel bioinformatics approaches, is particularly productive.</description><subject>Bioinformatics</subject><subject>Drug development</subject><subject>Drug Mechanism of Action</subject><subject>Machine Learning</subject><subject>Omics data</subject><subject>Systems Biology</subject><issn>0006-2952</issn><issn>1873-2968</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EoqXwA7ignBCXBK-dhwOnqjylIi5wtmxnDa6aB3aCxL8nVYAjp52VZma1HyGnQBOgkF9uEm26hFGWJgA5LcQemYMoeMzKXOyTOaU0H3XGZuQohM1uFTkckhkXKWUlLefk_MYPb9ETmnfVuFBfRctIu9Y1tvW16p2Jhq5SPR6TA6u2AU9-5oK83t2-rB7i9fP942q5jg2nWR-rrOJYIQOuUg2V1VgyKyjXOR0Pgi0MxxKUEWlhMR11yZQuLVib6oyalC_IxdTb-fZjwNDL2gWD261qsB2CZCVnFAQUMFphshrfhuDRys67WvkvCVTu8MiNHPHIHR454RkzZz_1g66x-kv88hgN15MBxyc_HXoZjMPGYOU8ml5Wrfun_hu7N3Or</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cirinciani, Martina</creator><creator>Da Pozzo, Eleonora</creator><creator>Trincavelli, Maria Letizia</creator><creator>Milazzo, Paolo</creator><creator>Martini, Claudia</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9379-3027</orcidid><orcidid>https://orcid.org/0009-0008-4209-761X</orcidid></search><sort><creationdate>20241001</creationdate><title>Drug Mechanism: A bioinformatic update</title><author>Cirinciani, Martina ; Da Pozzo, Eleonora ; Trincavelli, Maria Letizia ; Milazzo, Paolo ; Martini, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-a5d3ede213a4b1dfbe92f803b604021f7c3e91ac847fe43e992ab9f1ff4b50c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinformatics</topic><topic>Drug development</topic><topic>Drug Mechanism of Action</topic><topic>Machine Learning</topic><topic>Omics data</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cirinciani, Martina</creatorcontrib><creatorcontrib>Da Pozzo, Eleonora</creatorcontrib><creatorcontrib>Trincavelli, Maria Letizia</creatorcontrib><creatorcontrib>Milazzo, Paolo</creatorcontrib><creatorcontrib>Martini, Claudia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cirinciani, Martina</au><au>Da Pozzo, Eleonora</au><au>Trincavelli, Maria Letizia</au><au>Milazzo, Paolo</au><au>Martini, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug Mechanism: A bioinformatic update</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>228</volume><spage>116078</spage><pages>116078-</pages><artnum>116078</artnum><issn>0006-2952</issn><issn>1873-2968</issn><eissn>1873-2968</eissn><abstract>[Display omitted] A drug Mechanism of Action (MoA) is a complex biological phenomenon that describes how a bioactive compound produces a pharmacological effect. The complete knowledge of MoA is fundamental to fully understanding the drug activity. Over the years, many experimental methods have been developed and a huge quantity of data has been produced. Nowadays, considering the increasing omics data availability and the improvement of the accessible computational resources, the study of a drug MoA is conducted by integrating experimental and bioinformatics approaches. The development of new in silico solutions for this type of analysis is continuously ongoing; herein, an updating review on such bioinformatic methods is presented. The methodologies cited are based on multi-omics data integration in biochemical networks and Machine Learning (ML). The multiple types of usable input data and the advantages and disadvantages of each method have been analyzed, with a focus on their applications. Three specific research areas (i.e. cancer drug development, antibiotics discovery, and drug repurposing) have been chosen for their importance in the drug discovery fields in which the study of drug MoA, through novel bioinformatics approaches, is particularly productive.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>38402909</pmid><doi>10.1016/j.bcp.2024.116078</doi><orcidid>https://orcid.org/0000-0001-9379-3027</orcidid><orcidid>https://orcid.org/0009-0008-4209-761X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2952
ispartof Biochemical pharmacology, 2024-10, Vol.228, p.116078, Article 116078
issn 0006-2952
1873-2968
1873-2968
language eng
recordid cdi_proquest_miscellaneous_2932018171
source ScienceDirect Journals (5 years ago - present)
subjects Bioinformatics
Drug development
Drug Mechanism of Action
Machine Learning
Omics data
Systems Biology
title Drug Mechanism: A bioinformatic update
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20Mechanism:%20A%20bioinformatic%20update&rft.jtitle=Biochemical%20pharmacology&rft.au=Cirinciani,%20Martina&rft.date=2024-10-01&rft.volume=228&rft.spage=116078&rft.pages=116078-&rft.artnum=116078&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2024.116078&rft_dat=%3Cproquest_cross%3E2932018171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932018171&rft_id=info:pmid/38402909&rft_els_id=S0006295224000613&rfr_iscdi=true