Electrical spin injection into InGa(N)As quantum structures and single InGaAs quantum dots
We investigate electrical spin injection from a semi‐magnetic n‐type ZnMnSe spin aligner into III–V p–i–n diodes with InGaAs quantum dots (QDs) in the active layer. Quantitative transmission electron microscopy techniques are applied to characterize the different dot types used. Analysis of the circ...
Gespeichert in:
Veröffentlicht in: | Physica Status Solidi (b) 2006-11, Vol.243 (14), p.3812-3824 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3824 |
---|---|
container_issue | 14 |
container_start_page | 3812 |
container_title | Physica Status Solidi (b) |
container_volume | 243 |
creator | Hetterich, M. Löffler, W. Fallert, J. Höpcke, N. Burger, H. Passow, T. Li, S. Daniel, B. Ramadout, B. Lupaca-Schomber, J. Hetterich, J. Litvinov, D. Gerthsen, D. Klingshirn, C. Kalt, H. |
description | We investigate electrical spin injection from a semi‐magnetic n‐type ZnMnSe spin aligner into III–V p–i–n diodes with InGaAs quantum dots (QDs) in the active layer. Quantitative transmission electron microscopy techniques are applied to characterize the different dot types used. Analysis of the circular polarization degree (CPD) of the device emission indicates the spin polarization of the injected electrons. Values of more than 70% are obtained for the wetting layer and high‐energy QD states. However, the CPD shows a strong spectral dependence due to spin relaxation at the stage, before the electrons are finally captured in the dots. This is, e.g., evidenced by an initial increase of the polarization degree with rising temperature, attributed to motional narrowing effects. As a prerequisite for more detailed studies, we also demonstrate electrical spin injection into single InGaAs QDs, which should provide the basis for future single spin manipulation experiments. Finally, we suggest GaInNAs as optically active material for the realization of spin‐polarized light‐emitting diodes with long‐wavelength emission. First results indicate CPD values of up to 80% for λ = 1130 nm, suggesting this approach to be very promising. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssb.200672120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29319379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29319379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-cec330fc47dadd4b4c7919502f23d67c34460e0fa4bd0c11f2478f3983bf53e83</originalsourceid><addsrcrecordid>eNqFkE1P20AQhldVKzWlXHv2pagcnM7u2FnvkSYQkEJA4qvqZbVZ76Kljh12bEH-PU6DILeeZjR63nekh7FvHIYcQPxcES2GAmAkBRfwgQ14LniKKucf2QBQQsqVFJ_ZF6IHAJAc-YD9Oa6cbWOwpkpoFeok1A_9ITSbrW2Ss3pqfswPjyh57EzddsuE2tjZtouOElOXCYX6vnL_uB2obFr6yj55U5Hbf5177Obk-Hp8ms4upmfjo1lqsSggtc4igreZLE1ZZovMSsVVDsILLEfSYpaNwIE32aIEy7kXmSw8qgIXPkdX4B472PauYvPYOWr1MpB1VWVq13SkhUKuUKoeHG5BGxui6LxexbA0ca056I1CvVGo3xT2ge-vzYZ6QT6a2gZ6TxWiKFDkPae23FOo3Po_rfry6urX7o90mw3Uuue3rIl_9UiizPXdfKpnt_PJ3e_ziZ7gCyuLklQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29319379</pqid></control><display><type>article</type><title>Electrical spin injection into InGa(N)As quantum structures and single InGaAs quantum dots</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Hetterich, M. ; Löffler, W. ; Fallert, J. ; Höpcke, N. ; Burger, H. ; Passow, T. ; Li, S. ; Daniel, B. ; Ramadout, B. ; Lupaca-Schomber, J. ; Hetterich, J. ; Litvinov, D. ; Gerthsen, D. ; Klingshirn, C. ; Kalt, H.</creator><creatorcontrib>Hetterich, M. ; Löffler, W. ; Fallert, J. ; Höpcke, N. ; Burger, H. ; Passow, T. ; Li, S. ; Daniel, B. ; Ramadout, B. ; Lupaca-Schomber, J. ; Hetterich, J. ; Litvinov, D. ; Gerthsen, D. ; Klingshirn, C. ; Kalt, H.</creatorcontrib><description>We investigate electrical spin injection from a semi‐magnetic n‐type ZnMnSe spin aligner into III–V p–i–n diodes with InGaAs quantum dots (QDs) in the active layer. Quantitative transmission electron microscopy techniques are applied to characterize the different dot types used. Analysis of the circular polarization degree (CPD) of the device emission indicates the spin polarization of the injected electrons. Values of more than 70% are obtained for the wetting layer and high‐energy QD states. However, the CPD shows a strong spectral dependence due to spin relaxation at the stage, before the electrons are finally captured in the dots. This is, e.g., evidenced by an initial increase of the polarization degree with rising temperature, attributed to motional narrowing effects. As a prerequisite for more detailed studies, we also demonstrate electrical spin injection into single InGaAs QDs, which should provide the basis for future single spin manipulation experiments. Finally, we suggest GaInNAs as optically active material for the realization of spin‐polarized light‐emitting diodes with long‐wavelength emission. First results indicate CPD values of up to 80% for λ = 1130 nm, suggesting this approach to be very promising. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200672120</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>72.25.Dc ; 72.25.Hg ; 72.25.Rb ; 75.50.Pp ; 78.55.Cr ; 85.60.Jb ; Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic transport in condensed matter ; Electronics ; Exact sciences and technology ; Optoelectronic devices ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Spin polarized transport</subject><ispartof>Physica Status Solidi (b), 2006-11, Vol.243 (14), p.3812-3824</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-cec330fc47dadd4b4c7919502f23d67c34460e0fa4bd0c11f2478f3983bf53e83</citedby><cites>FETCH-LOGICAL-c3880-cec330fc47dadd4b4c7919502f23d67c34460e0fa4bd0c11f2478f3983bf53e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200672120$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200672120$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18288325$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hetterich, M.</creatorcontrib><creatorcontrib>Löffler, W.</creatorcontrib><creatorcontrib>Fallert, J.</creatorcontrib><creatorcontrib>Höpcke, N.</creatorcontrib><creatorcontrib>Burger, H.</creatorcontrib><creatorcontrib>Passow, T.</creatorcontrib><creatorcontrib>Li, S.</creatorcontrib><creatorcontrib>Daniel, B.</creatorcontrib><creatorcontrib>Ramadout, B.</creatorcontrib><creatorcontrib>Lupaca-Schomber, J.</creatorcontrib><creatorcontrib>Hetterich, J.</creatorcontrib><creatorcontrib>Litvinov, D.</creatorcontrib><creatorcontrib>Gerthsen, D.</creatorcontrib><creatorcontrib>Klingshirn, C.</creatorcontrib><creatorcontrib>Kalt, H.</creatorcontrib><title>Electrical spin injection into InGa(N)As quantum structures and single InGaAs quantum dots</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>We investigate electrical spin injection from a semi‐magnetic n‐type ZnMnSe spin aligner into III–V p–i–n diodes with InGaAs quantum dots (QDs) in the active layer. Quantitative transmission electron microscopy techniques are applied to characterize the different dot types used. Analysis of the circular polarization degree (CPD) of the device emission indicates the spin polarization of the injected electrons. Values of more than 70% are obtained for the wetting layer and high‐energy QD states. However, the CPD shows a strong spectral dependence due to spin relaxation at the stage, before the electrons are finally captured in the dots. This is, e.g., evidenced by an initial increase of the polarization degree with rising temperature, attributed to motional narrowing effects. As a prerequisite for more detailed studies, we also demonstrate electrical spin injection into single InGaAs QDs, which should provide the basis for future single spin manipulation experiments. Finally, we suggest GaInNAs as optically active material for the realization of spin‐polarized light‐emitting diodes with long‐wavelength emission. First results indicate CPD values of up to 80% for λ = 1130 nm, suggesting this approach to be very promising. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>72.25.Dc</subject><subject>72.25.Hg</subject><subject>72.25.Rb</subject><subject>75.50.Pp</subject><subject>78.55.Cr</subject><subject>85.60.Jb</subject><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic transport in condensed matter</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Spin polarized transport</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P20AQhldVKzWlXHv2pagcnM7u2FnvkSYQkEJA4qvqZbVZ76Kljh12bEH-PU6DILeeZjR63nekh7FvHIYcQPxcES2GAmAkBRfwgQ14LniKKucf2QBQQsqVFJ_ZF6IHAJAc-YD9Oa6cbWOwpkpoFeok1A_9ITSbrW2Ss3pqfswPjyh57EzddsuE2tjZtouOElOXCYX6vnL_uB2obFr6yj55U5Hbf5177Obk-Hp8ms4upmfjo1lqsSggtc4igreZLE1ZZovMSsVVDsILLEfSYpaNwIE32aIEy7kXmSw8qgIXPkdX4B472PauYvPYOWr1MpB1VWVq13SkhUKuUKoeHG5BGxui6LxexbA0ca056I1CvVGo3xT2ge-vzYZ6QT6a2gZ6TxWiKFDkPae23FOo3Po_rfry6urX7o90mw3Uuue3rIl_9UiizPXdfKpnt_PJ3e_ziZ7gCyuLklQ</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Hetterich, M.</creator><creator>Löffler, W.</creator><creator>Fallert, J.</creator><creator>Höpcke, N.</creator><creator>Burger, H.</creator><creator>Passow, T.</creator><creator>Li, S.</creator><creator>Daniel, B.</creator><creator>Ramadout, B.</creator><creator>Lupaca-Schomber, J.</creator><creator>Hetterich, J.</creator><creator>Litvinov, D.</creator><creator>Gerthsen, D.</creator><creator>Klingshirn, C.</creator><creator>Kalt, H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200611</creationdate><title>Electrical spin injection into InGa(N)As quantum structures and single InGaAs quantum dots</title><author>Hetterich, M. ; Löffler, W. ; Fallert, J. ; Höpcke, N. ; Burger, H. ; Passow, T. ; Li, S. ; Daniel, B. ; Ramadout, B. ; Lupaca-Schomber, J. ; Hetterich, J. ; Litvinov, D. ; Gerthsen, D. ; Klingshirn, C. ; Kalt, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-cec330fc47dadd4b4c7919502f23d67c34460e0fa4bd0c11f2478f3983bf53e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>72.25.Dc</topic><topic>72.25.Hg</topic><topic>72.25.Rb</topic><topic>75.50.Pp</topic><topic>78.55.Cr</topic><topic>85.60.Jb</topic><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic transport in condensed matter</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Spin polarized transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hetterich, M.</creatorcontrib><creatorcontrib>Löffler, W.</creatorcontrib><creatorcontrib>Fallert, J.</creatorcontrib><creatorcontrib>Höpcke, N.</creatorcontrib><creatorcontrib>Burger, H.</creatorcontrib><creatorcontrib>Passow, T.</creatorcontrib><creatorcontrib>Li, S.</creatorcontrib><creatorcontrib>Daniel, B.</creatorcontrib><creatorcontrib>Ramadout, B.</creatorcontrib><creatorcontrib>Lupaca-Schomber, J.</creatorcontrib><creatorcontrib>Hetterich, J.</creatorcontrib><creatorcontrib>Litvinov, D.</creatorcontrib><creatorcontrib>Gerthsen, D.</creatorcontrib><creatorcontrib>Klingshirn, C.</creatorcontrib><creatorcontrib>Kalt, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hetterich, M.</au><au>Löffler, W.</au><au>Fallert, J.</au><au>Höpcke, N.</au><au>Burger, H.</au><au>Passow, T.</au><au>Li, S.</au><au>Daniel, B.</au><au>Ramadout, B.</au><au>Lupaca-Schomber, J.</au><au>Hetterich, J.</au><au>Litvinov, D.</au><au>Gerthsen, D.</au><au>Klingshirn, C.</au><au>Kalt, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical spin injection into InGa(N)As quantum structures and single InGaAs quantum dots</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2006-11</date><risdate>2006</risdate><volume>243</volume><issue>14</issue><spage>3812</spage><epage>3824</epage><pages>3812-3824</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>We investigate electrical spin injection from a semi‐magnetic n‐type ZnMnSe spin aligner into III–V p–i–n diodes with InGaAs quantum dots (QDs) in the active layer. Quantitative transmission electron microscopy techniques are applied to characterize the different dot types used. Analysis of the circular polarization degree (CPD) of the device emission indicates the spin polarization of the injected electrons. Values of more than 70% are obtained for the wetting layer and high‐energy QD states. However, the CPD shows a strong spectral dependence due to spin relaxation at the stage, before the electrons are finally captured in the dots. This is, e.g., evidenced by an initial increase of the polarization degree with rising temperature, attributed to motional narrowing effects. As a prerequisite for more detailed studies, we also demonstrate electrical spin injection into single InGaAs QDs, which should provide the basis for future single spin manipulation experiments. Finally, we suggest GaInNAs as optically active material for the realization of spin‐polarized light‐emitting diodes with long‐wavelength emission. First results indicate CPD values of up to 80% for λ = 1130 nm, suggesting this approach to be very promising. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200672120</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi (b), 2006-11, Vol.243 (14), p.3812-3824 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_proquest_miscellaneous_29319379 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | 72.25.Dc 72.25.Hg 72.25.Rb 75.50.Pp 78.55.Cr 85.60.Jb Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronic transport in condensed matter Electronics Exact sciences and technology Optoelectronic devices Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Spin polarized transport |
title | Electrical spin injection into InGa(N)As quantum structures and single InGaAs quantum dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20spin%20injection%20into%20InGa(N)As%20quantum%20structures%20and%20single%20InGaAs%20quantum%20dots&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Hetterich,%20M.&rft.date=2006-11&rft.volume=243&rft.issue=14&rft.spage=3812&rft.epage=3824&rft.pages=3812-3824&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200672120&rft_dat=%3Cproquest_cross%3E29319379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29319379&rft_id=info:pmid/&rfr_iscdi=true |