Electromagnetic Smart Valves for Cryogenic Applications

Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Traum, M J, Smith Jr, J L, Brisson, J G, Gerstmann, J, Hannon, C L
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue
container_start_page 428
container_title
container_volume 710
creator Traum, M J
Smith Jr, J L
Brisson, J G
Gerstmann, J
Hannon, C L
description Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization.The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end.The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.
doi_str_mv 10.1063/1.1774712
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29312084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29312084</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-6b18db95d387c43fc753a2814e71c20247e52e7aef7fb0359b06e5529e6392963</originalsourceid><addsrcrecordid>eNotzMtKAzEUgOGACtbahW8wK3dTT64nWZZSrVBw4QV3JZOeKSOZyThJBd9eQVf_4oOfsRsOSw5G3vElR1TIxRlbOLSAUiuQVsE5mwE4VQsl3y_ZVc4fAMIh2hnDTaRQptT740ClC9Vz76dSvfn4Rblq01Stp-90pOGXVuMYu-BLl4Z8zS5aHzMt_jtnr_ebl_W23j09PK5Xu3rk1pTaNNweGqcP0mJQsg2opReWK0IeBAiFpAWhpxbbBqR2DRjSWjgy0gln5Jzd_n3HKX2eKJd93-VAMfqB0invhZNcgFXyBznuSIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29312084</pqid></control><display><type>conference_proceeding</type><title>Electromagnetic Smart Valves for Cryogenic Applications</title><source>AIP Journals Complete</source><creator>Traum, M J ; Smith Jr, J L ; Brisson, J G ; Gerstmann, J ; Hannon, C L</creator><creatorcontrib>Traum, M J ; Smith Jr, J L ; Brisson, J G ; Gerstmann, J ; Hannon, C L</creatorcontrib><description>Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization.The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end.The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735403840</identifier><identifier>ISBN: 0735403848</identifier><identifier>DOI: 10.1063/1.1774712</identifier><language>eng</language><ispartof>Advances in Cryogenic Engineering; Volume 49A, 2004, Vol.710, p.428-435</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Traum, M J</creatorcontrib><creatorcontrib>Smith Jr, J L</creatorcontrib><creatorcontrib>Brisson, J G</creatorcontrib><creatorcontrib>Gerstmann, J</creatorcontrib><creatorcontrib>Hannon, C L</creatorcontrib><title>Electromagnetic Smart Valves for Cryogenic Applications</title><title>Advances in Cryogenic Engineering; Volume 49A</title><description>Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization.The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end.The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.</description><issn>0094-243X</issn><isbn>9780735403840</isbn><isbn>0735403848</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotzMtKAzEUgOGACtbahW8wK3dTT64nWZZSrVBw4QV3JZOeKSOZyThJBd9eQVf_4oOfsRsOSw5G3vElR1TIxRlbOLSAUiuQVsE5mwE4VQsl3y_ZVc4fAMIh2hnDTaRQptT740ClC9Vz76dSvfn4Rblq01Stp-90pOGXVuMYu-BLl4Z8zS5aHzMt_jtnr_ebl_W23j09PK5Xu3rk1pTaNNweGqcP0mJQsg2opReWK0IeBAiFpAWhpxbbBqR2DRjSWjgy0gln5Jzd_n3HKX2eKJd93-VAMfqB0invhZNcgFXyBznuSIw</recordid><startdate>20040623</startdate><enddate>20040623</enddate><creator>Traum, M J</creator><creator>Smith Jr, J L</creator><creator>Brisson, J G</creator><creator>Gerstmann, J</creator><creator>Hannon, C L</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040623</creationdate><title>Electromagnetic Smart Valves for Cryogenic Applications</title><author>Traum, M J ; Smith Jr, J L ; Brisson, J G ; Gerstmann, J ; Hannon, C L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-6b18db95d387c43fc753a2814e71c20247e52e7aef7fb0359b06e5529e6392963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traum, M J</creatorcontrib><creatorcontrib>Smith Jr, J L</creatorcontrib><creatorcontrib>Brisson, J G</creatorcontrib><creatorcontrib>Gerstmann, J</creatorcontrib><creatorcontrib>Hannon, C L</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traum, M J</au><au>Smith Jr, J L</au><au>Brisson, J G</au><au>Gerstmann, J</au><au>Hannon, C L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electromagnetic Smart Valves for Cryogenic Applications</atitle><btitle>Advances in Cryogenic Engineering; Volume 49A</btitle><date>2004-06-23</date><risdate>2004</risdate><volume>710</volume><spage>428</spage><epage>435</epage><pages>428-435</pages><issn>0094-243X</issn><isbn>9780735403840</isbn><isbn>0735403848</isbn><abstract>Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization.The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end.The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.</abstract><doi>10.1063/1.1774712</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Advances in Cryogenic Engineering; Volume 49A, 2004, Vol.710, p.428-435
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_29312084
source AIP Journals Complete
title Electromagnetic Smart Valves for Cryogenic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electromagnetic%20Smart%20Valves%20for%20Cryogenic%20Applications&rft.btitle=Advances%20in%20Cryogenic%20Engineering;%20Volume%2049A&rft.au=Traum,%20M%20J&rft.date=2004-06-23&rft.volume=710&rft.spage=428&rft.epage=435&rft.pages=428-435&rft.issn=0094-243X&rft.isbn=9780735403840&rft.isbn_list=0735403848&rft_id=info:doi/10.1063/1.1774712&rft_dat=%3Cproquest%3E29312084%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29312084&rft_id=info:pmid/&rfr_iscdi=true