Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics
Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 18...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2006-06, Vol.89 (6), p.1945-1950 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1950 |
---|---|
container_issue | 6 |
container_start_page | 1945 |
container_title | Journal of the American Ceramic Society |
container_volume | 89 |
creator | Lee, Sang-Ho Kochawattana, Sujarinee Messing, Gary L. Dumm, John Q. Quarles, Gregory Castillo, Vida |
description | Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy‐dispersive spectroscopy to be uniform throughout the samples. The in‐line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method. |
doi_str_mv | 10.1111/j.1551-2916.2006.01051.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29310954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082186896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5711-b8466cb2c05d93d3c1bf7b5c9975b05d5bf20b673841d9e3cd73f34d35f80bc03</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhi0EEmXwHyIkEDcJx1-xzQ2qylaYuoHoEB83luM4yMVNip1C--9x12lIXKD5xj72cx7J50WowFDhvF6uKsw5LonCdUUA6gowcFzt7qHJ7cN9NAEAUgpJ4CF6lNIql1hJNkEXyyH4tlyOZnTFR2fs6H-5Yun70UXffy-GrriKpk8bE10_Fh-GsLdxn0YTgu9dcdm--jqdFzMXzdrb9Bg96ExI7snNfoI-nZ1ezd6Wi_fzd7PporRcYFw2ktW1bYgF3iraUoubTjTcKiV4k-940xFoakElw61y1LaCdpS1lHcSGgv0BD0_ejdx-Ll1adRrn6wLwfRu2CZNFMWgOLsDCIzxWmXwxX9BDJJgWUtVZ_TpP-hq2MY-_1cTLBQDqniG5BGycUgpuk5vol-buM8mfQhOr_QhH33IRx-C09fB6V1ufXbjN8ma0OXxW5_-9gspGaU4c6-P3G8f3P7Ofn0-nZ1en7OhPBp8Gt3u1mDiD52HL7j-fDnXi8Wbb-rs4lx_oX8Auie5QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217940395</pqid></control><display><type>article</type><title>Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Sang-Ho ; Kochawattana, Sujarinee ; Messing, Gary L. ; Dumm, John Q. ; Quarles, Gregory ; Castillo, Vida</creator><creatorcontrib>Lee, Sang-Ho ; Kochawattana, Sujarinee ; Messing, Gary L. ; Dumm, John Q. ; Quarles, Gregory ; Castillo, Vida</creatorcontrib><description>Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy‐dispersive spectroscopy to be uniform throughout the samples. The in‐line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2006.01051.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Activated sintering ; Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Ceramic sintering ; Ceramics ; Chemical industry and chemicals ; Electrotechnical and electronic ceramics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Grain growth ; Laser materials ; Methyl alcohol ; Nanoparticles ; Neodymium ; Optical materials ; Optics ; Physics ; Reactive sintering ; Sintering ; Sintering (powder metallurgy) ; Technical ceramics ; Temperature ; Transmittance</subject><ispartof>Journal of the American Ceramic Society, 2006-06, Vol.89 (6), p.1945-1950</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Ceramic Society Jun 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5711-b8466cb2c05d93d3c1bf7b5c9975b05d5bf20b673841d9e3cd73f34d35f80bc03</citedby><cites>FETCH-LOGICAL-c5711-b8466cb2c05d93d3c1bf7b5c9975b05d5bf20b673841d9e3cd73f34d35f80bc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2006.01051.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17884331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sang-Ho</creatorcontrib><creatorcontrib>Kochawattana, Sujarinee</creatorcontrib><creatorcontrib>Messing, Gary L.</creatorcontrib><creatorcontrib>Dumm, John Q.</creatorcontrib><creatorcontrib>Quarles, Gregory</creatorcontrib><creatorcontrib>Castillo, Vida</creatorcontrib><title>Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics</title><title>Journal of the American Ceramic Society</title><description>Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy‐dispersive spectroscopy to be uniform throughout the samples. The in‐line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.</description><subject>Activated sintering</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Ceramic sintering</subject><subject>Ceramics</subject><subject>Chemical industry and chemicals</subject><subject>Electrotechnical and electronic ceramics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grain growth</subject><subject>Laser materials</subject><subject>Methyl alcohol</subject><subject>Nanoparticles</subject><subject>Neodymium</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Physics</subject><subject>Reactive sintering</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Technical ceramics</subject><subject>Temperature</subject><subject>Transmittance</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkV1v0zAUhi0EEmXwHyIkEDcJx1-xzQ2qylaYuoHoEB83luM4yMVNip1C--9x12lIXKD5xj72cx7J50WowFDhvF6uKsw5LonCdUUA6gowcFzt7qHJ7cN9NAEAUgpJ4CF6lNIql1hJNkEXyyH4tlyOZnTFR2fs6H-5Yun70UXffy-GrriKpk8bE10_Fh-GsLdxn0YTgu9dcdm--jqdFzMXzdrb9Bg96ExI7snNfoI-nZ1ezd6Wi_fzd7PporRcYFw2ktW1bYgF3iraUoubTjTcKiV4k-940xFoakElw61y1LaCdpS1lHcSGgv0BD0_ejdx-Ll1adRrn6wLwfRu2CZNFMWgOLsDCIzxWmXwxX9BDJJgWUtVZ_TpP-hq2MY-_1cTLBQDqniG5BGycUgpuk5vol-buM8mfQhOr_QhH33IRx-C09fB6V1ufXbjN8ma0OXxW5_-9gspGaU4c6-P3G8f3P7Ofn0-nZ1en7OhPBp8Gt3u1mDiD52HL7j-fDnXi8Wbb-rs4lx_oX8Auie5QQ</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Lee, Sang-Ho</creator><creator>Kochawattana, Sujarinee</creator><creator>Messing, Gary L.</creator><creator>Dumm, John Q.</creator><creator>Quarles, Gregory</creator><creator>Castillo, Vida</creator><general>Blackwell Publishing Inc</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>200606</creationdate><title>Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics</title><author>Lee, Sang-Ho ; Kochawattana, Sujarinee ; Messing, Gary L. ; Dumm, John Q. ; Quarles, Gregory ; Castillo, Vida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5711-b8466cb2c05d93d3c1bf7b5c9975b05d5bf20b673841d9e3cd73f34d35f80bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Activated sintering</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Ceramic sintering</topic><topic>Ceramics</topic><topic>Chemical industry and chemicals</topic><topic>Electrotechnical and electronic ceramics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grain growth</topic><topic>Laser materials</topic><topic>Methyl alcohol</topic><topic>Nanoparticles</topic><topic>Neodymium</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Physics</topic><topic>Reactive sintering</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Technical ceramics</topic><topic>Temperature</topic><topic>Transmittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang-Ho</creatorcontrib><creatorcontrib>Kochawattana, Sujarinee</creatorcontrib><creatorcontrib>Messing, Gary L.</creatorcontrib><creatorcontrib>Dumm, John Q.</creatorcontrib><creatorcontrib>Quarles, Gregory</creatorcontrib><creatorcontrib>Castillo, Vida</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang-Ho</au><au>Kochawattana, Sujarinee</au><au>Messing, Gary L.</au><au>Dumm, John Q.</au><au>Quarles, Gregory</au><au>Castillo, Vida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2006-06</date><risdate>2006</risdate><volume>89</volume><issue>6</issue><spage>1945</spage><epage>1950</epage><pages>1945-1950</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy‐dispersive spectroscopy to be uniform throughout the samples. The in‐line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2006.01051.x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2006-06, Vol.89 (6), p.1945-1950 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_29310954 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Activated sintering Applied sciences Building materials. Ceramics. Glasses Ceramic industries Ceramic sintering Ceramics Chemical industry and chemicals Electrotechnical and electronic ceramics Exact sciences and technology Fundamental areas of phenomenology (including applications) Grain growth Laser materials Methyl alcohol Nanoparticles Neodymium Optical materials Optics Physics Reactive sintering Sintering Sintering (powder metallurgy) Technical ceramics Temperature Transmittance |
title | Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20Reactive%20Sintering%20of%20Transparent%20Polycrystalline%20Nd:YAG%20Ceramics&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Lee,%20Sang-Ho&rft.date=2006-06&rft.volume=89&rft.issue=6&rft.spage=1945&rft.epage=1950&rft.pages=1945-1950&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2006.01051.x&rft_dat=%3Cproquest_cross%3E1082186896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217940395&rft_id=info:pmid/&rfr_iscdi=true |