Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics

Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 18...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2006-06, Vol.89 (6), p.1945-1950
Hauptverfasser: Lee, Sang-Ho, Kochawattana, Sujarinee, Messing, Gary L., Dumm, John Q., Quarles, Gregory, Castillo, Vida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1950
container_issue 6
container_start_page 1945
container_title Journal of the American Ceramic Society
container_volume 89
creator Lee, Sang-Ho
Kochawattana, Sujarinee
Messing, Gary L.
Dumm, John Q.
Quarles, Gregory
Castillo, Vida
description Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy‐dispersive spectroscopy to be uniform throughout the samples. The in‐line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.
doi_str_mv 10.1111/j.1551-2916.2006.01051.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29310954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082186896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5711-b8466cb2c05d93d3c1bf7b5c9975b05d5bf20b673841d9e3cd73f34d35f80bc03</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhi0EEmXwHyIkEDcJx1-xzQ2qylaYuoHoEB83luM4yMVNip1C--9x12lIXKD5xj72cx7J50WowFDhvF6uKsw5LonCdUUA6gowcFzt7qHJ7cN9NAEAUgpJ4CF6lNIql1hJNkEXyyH4tlyOZnTFR2fs6H-5Yun70UXffy-GrriKpk8bE10_Fh-GsLdxn0YTgu9dcdm--jqdFzMXzdrb9Bg96ExI7snNfoI-nZ1ezd6Wi_fzd7PporRcYFw2ktW1bYgF3iraUoubTjTcKiV4k-940xFoakElw61y1LaCdpS1lHcSGgv0BD0_ejdx-Ll1adRrn6wLwfRu2CZNFMWgOLsDCIzxWmXwxX9BDJJgWUtVZ_TpP-hq2MY-_1cTLBQDqniG5BGycUgpuk5vol-buM8mfQhOr_QhH33IRx-C09fB6V1ufXbjN8ma0OXxW5_-9gspGaU4c6-P3G8f3P7Ofn0-nZ1en7OhPBp8Gt3u1mDiD52HL7j-fDnXi8Wbb-rs4lx_oX8Auie5QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217940395</pqid></control><display><type>article</type><title>Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Sang-Ho ; Kochawattana, Sujarinee ; Messing, Gary L. ; Dumm, John Q. ; Quarles, Gregory ; Castillo, Vida</creator><creatorcontrib>Lee, Sang-Ho ; Kochawattana, Sujarinee ; Messing, Gary L. ; Dumm, John Q. ; Quarles, Gregory ; Castillo, Vida</creatorcontrib><description>Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy‐dispersive spectroscopy to be uniform throughout the samples. The in‐line transmittance was &gt;80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2006.01051.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Activated sintering ; Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Ceramic sintering ; Ceramics ; Chemical industry and chemicals ; Electrotechnical and electronic ceramics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Grain growth ; Laser materials ; Methyl alcohol ; Nanoparticles ; Neodymium ; Optical materials ; Optics ; Physics ; Reactive sintering ; Sintering ; Sintering (powder metallurgy) ; Technical ceramics ; Temperature ; Transmittance</subject><ispartof>Journal of the American Ceramic Society, 2006-06, Vol.89 (6), p.1945-1950</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Ceramic Society Jun 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5711-b8466cb2c05d93d3c1bf7b5c9975b05d5bf20b673841d9e3cd73f34d35f80bc03</citedby><cites>FETCH-LOGICAL-c5711-b8466cb2c05d93d3c1bf7b5c9975b05d5bf20b673841d9e3cd73f34d35f80bc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2006.01051.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17884331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sang-Ho</creatorcontrib><creatorcontrib>Kochawattana, Sujarinee</creatorcontrib><creatorcontrib>Messing, Gary L.</creatorcontrib><creatorcontrib>Dumm, John Q.</creatorcontrib><creatorcontrib>Quarles, Gregory</creatorcontrib><creatorcontrib>Castillo, Vida</creatorcontrib><title>Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics</title><title>Journal of the American Ceramic Society</title><description>Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy‐dispersive spectroscopy to be uniform throughout the samples. The in‐line transmittance was &gt;80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.</description><subject>Activated sintering</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Ceramic sintering</subject><subject>Ceramics</subject><subject>Chemical industry and chemicals</subject><subject>Electrotechnical and electronic ceramics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grain growth</subject><subject>Laser materials</subject><subject>Methyl alcohol</subject><subject>Nanoparticles</subject><subject>Neodymium</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Physics</subject><subject>Reactive sintering</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Technical ceramics</subject><subject>Temperature</subject><subject>Transmittance</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkV1v0zAUhi0EEmXwHyIkEDcJx1-xzQ2qylaYuoHoEB83luM4yMVNip1C--9x12lIXKD5xj72cx7J50WowFDhvF6uKsw5LonCdUUA6gowcFzt7qHJ7cN9NAEAUgpJ4CF6lNIql1hJNkEXyyH4tlyOZnTFR2fs6H-5Yun70UXffy-GrriKpk8bE10_Fh-GsLdxn0YTgu9dcdm--jqdFzMXzdrb9Bg96ExI7snNfoI-nZ1ezd6Wi_fzd7PporRcYFw2ktW1bYgF3iraUoubTjTcKiV4k-940xFoakElw61y1LaCdpS1lHcSGgv0BD0_ejdx-Ll1adRrn6wLwfRu2CZNFMWgOLsDCIzxWmXwxX9BDJJgWUtVZ_TpP-hq2MY-_1cTLBQDqniG5BGycUgpuk5vol-buM8mfQhOr_QhH33IRx-C09fB6V1ufXbjN8ma0OXxW5_-9gspGaU4c6-P3G8f3P7Ofn0-nZ1en7OhPBp8Gt3u1mDiD52HL7j-fDnXi8Wbb-rs4lx_oX8Auie5QQ</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Lee, Sang-Ho</creator><creator>Kochawattana, Sujarinee</creator><creator>Messing, Gary L.</creator><creator>Dumm, John Q.</creator><creator>Quarles, Gregory</creator><creator>Castillo, Vida</creator><general>Blackwell Publishing Inc</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>200606</creationdate><title>Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics</title><author>Lee, Sang-Ho ; Kochawattana, Sujarinee ; Messing, Gary L. ; Dumm, John Q. ; Quarles, Gregory ; Castillo, Vida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5711-b8466cb2c05d93d3c1bf7b5c9975b05d5bf20b673841d9e3cd73f34d35f80bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Activated sintering</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Ceramic sintering</topic><topic>Ceramics</topic><topic>Chemical industry and chemicals</topic><topic>Electrotechnical and electronic ceramics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grain growth</topic><topic>Laser materials</topic><topic>Methyl alcohol</topic><topic>Nanoparticles</topic><topic>Neodymium</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Physics</topic><topic>Reactive sintering</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Technical ceramics</topic><topic>Temperature</topic><topic>Transmittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang-Ho</creatorcontrib><creatorcontrib>Kochawattana, Sujarinee</creatorcontrib><creatorcontrib>Messing, Gary L.</creatorcontrib><creatorcontrib>Dumm, John Q.</creatorcontrib><creatorcontrib>Quarles, Gregory</creatorcontrib><creatorcontrib>Castillo, Vida</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang-Ho</au><au>Kochawattana, Sujarinee</au><au>Messing, Gary L.</au><au>Dumm, John Q.</au><au>Quarles, Gregory</au><au>Castillo, Vida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2006-06</date><risdate>2006</risdate><volume>89</volume><issue>6</issue><spage>1945</spage><epage>1950</epage><pages>1945-1950</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Transparent polycrystalline Nd:YAG ceramics were fabricated by solid‐state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy‐dispersive spectroscopy to be uniform throughout the samples. The in‐line transmittance was &gt;80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2006.01051.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2006-06, Vol.89 (6), p.1945-1950
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_29310954
source Wiley Online Library Journals Frontfile Complete
subjects Activated sintering
Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Ceramic sintering
Ceramics
Chemical industry and chemicals
Electrotechnical and electronic ceramics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Grain growth
Laser materials
Methyl alcohol
Nanoparticles
Neodymium
Optical materials
Optics
Physics
Reactive sintering
Sintering
Sintering (powder metallurgy)
Technical ceramics
Temperature
Transmittance
title Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20Reactive%20Sintering%20of%20Transparent%20Polycrystalline%20Nd:YAG%20Ceramics&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Lee,%20Sang-Ho&rft.date=2006-06&rft.volume=89&rft.issue=6&rft.spage=1945&rft.epage=1950&rft.pages=1945-1950&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2006.01051.x&rft_dat=%3Cproquest_cross%3E1082186896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217940395&rft_id=info:pmid/&rfr_iscdi=true