Kernel ridge regression for volume fraction prediction in electrical impedance tomography

We investigate using a kernel learning machine, specifically kernel ridge regression (KRR), to predict volume fractions in typical industrial electrical impedance tomography (EIT) applications. The 'curse of dimensionality' associated with applying such methods to physically captured EIT t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2006-10, Vol.17 (10), p.2711-2720
Hauptverfasser: Goldswain, G, Tapson, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2720
container_issue 10
container_start_page 2711
container_title Measurement science & technology
container_volume 17
creator Goldswain, G
Tapson, J
description We investigate using a kernel learning machine, specifically kernel ridge regression (KRR), to predict volume fractions in typical industrial electrical impedance tomography (EIT) applications. The 'curse of dimensionality' associated with applying such methods to physically captured EIT training data is overcome with a new training method, involving sampling of training data during rapid random repositioning of a set of physical objects in the measurement plane. We compare the performance to multi-layer perceptron (MLP) neural networks which appear to be the most common computational intelligence approach to the EIT reconstruction problem. We use empirically trained static situations so as to compare the results to previous research. Dynamic situations are also investigated, and KRR is shown to outperform MLP methods in both cases. Furthermore, KRR is shown to be a useful tool in EIT for extracting process information from industrial flows without first performing conventional image reconstruction.
doi_str_mv 10.1088/0957-0233/17/10/025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29305736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29305736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-6485c853b8daf90850a557a7d2aaaeecd7d16a7ce23c07c2d8fb2c883c38b9423</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1g8MSCl8aOOnRFVvEQlFhiYLNe-KUZJHOwUqf-eREFdQEz36ug7Z_gQuqRkQYlSOSmFzAjjPKcypyQnTByhGeUFzQpB6DGaHYhTdJbSByFEkrKcobcniC3UOHq3BRxhGyElH1pchYi_Qr1rAFfR2H7MugjOT69vMdRg--itqbFvOnCmtYD70IRtNN37_hydVKZOcPFz5-j17vZl9ZCtn-8fVzfrzHKx7LNiqYRVgm-UM1VJlCBGCGmkY8YYAOuko4WRFhi3RFrmVLVhViluudqUS8bn6Gra7WL43EHqdeOThbo2LYRd0qzkREheDCCfQBtDShEq3UXfmLjXlOhRox4l6VGSpnIMB41D63pq-dAdCn-AunPVAC9-w_-tfwPMsoIq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29305736</pqid></control><display><type>article</type><title>Kernel ridge regression for volume fraction prediction in electrical impedance tomography</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Goldswain, G ; Tapson, J</creator><creatorcontrib>Goldswain, G ; Tapson, J</creatorcontrib><description>We investigate using a kernel learning machine, specifically kernel ridge regression (KRR), to predict volume fractions in typical industrial electrical impedance tomography (EIT) applications. The 'curse of dimensionality' associated with applying such methods to physically captured EIT training data is overcome with a new training method, involving sampling of training data during rapid random repositioning of a set of physical objects in the measurement plane. We compare the performance to multi-layer perceptron (MLP) neural networks which appear to be the most common computational intelligence approach to the EIT reconstruction problem. We use empirically trained static situations so as to compare the results to previous research. Dynamic situations are also investigated, and KRR is shown to outperform MLP methods in both cases. Furthermore, KRR is shown to be a useful tool in EIT for extracting process information from industrial flows without first performing conventional image reconstruction.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/0957-0233/17/10/025</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Measurement science &amp; technology, 2006-10, Vol.17 (10), p.2711-2720</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-6485c853b8daf90850a557a7d2aaaeecd7d16a7ce23c07c2d8fb2c883c38b9423</citedby><cites>FETCH-LOGICAL-c354t-6485c853b8daf90850a557a7d2aaaeecd7d16a7ce23c07c2d8fb2c883c38b9423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-0233/17/10/025/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids></links><search><creatorcontrib>Goldswain, G</creatorcontrib><creatorcontrib>Tapson, J</creatorcontrib><title>Kernel ridge regression for volume fraction prediction in electrical impedance tomography</title><title>Measurement science &amp; technology</title><description>We investigate using a kernel learning machine, specifically kernel ridge regression (KRR), to predict volume fractions in typical industrial electrical impedance tomography (EIT) applications. The 'curse of dimensionality' associated with applying such methods to physically captured EIT training data is overcome with a new training method, involving sampling of training data during rapid random repositioning of a set of physical objects in the measurement plane. We compare the performance to multi-layer perceptron (MLP) neural networks which appear to be the most common computational intelligence approach to the EIT reconstruction problem. We use empirically trained static situations so as to compare the results to previous research. Dynamic situations are also investigated, and KRR is shown to outperform MLP methods in both cases. Furthermore, KRR is shown to be a useful tool in EIT for extracting process information from industrial flows without first performing conventional image reconstruction.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1g8MSCl8aOOnRFVvEQlFhiYLNe-KUZJHOwUqf-eREFdQEz36ug7Z_gQuqRkQYlSOSmFzAjjPKcypyQnTByhGeUFzQpB6DGaHYhTdJbSByFEkrKcobcniC3UOHq3BRxhGyElH1pchYi_Qr1rAFfR2H7MugjOT69vMdRg--itqbFvOnCmtYD70IRtNN37_hydVKZOcPFz5-j17vZl9ZCtn-8fVzfrzHKx7LNiqYRVgm-UM1VJlCBGCGmkY8YYAOuko4WRFhi3RFrmVLVhViluudqUS8bn6Gra7WL43EHqdeOThbo2LYRd0qzkREheDCCfQBtDShEq3UXfmLjXlOhRox4l6VGSpnIMB41D63pq-dAdCn-AunPVAC9-w_-tfwPMsoIq</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Goldswain, G</creator><creator>Tapson, J</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061001</creationdate><title>Kernel ridge regression for volume fraction prediction in electrical impedance tomography</title><author>Goldswain, G ; Tapson, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-6485c853b8daf90850a557a7d2aaaeecd7d16a7ce23c07c2d8fb2c883c38b9423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldswain, G</creatorcontrib><creatorcontrib>Tapson, J</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldswain, G</au><au>Tapson, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel ridge regression for volume fraction prediction in electrical impedance tomography</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>17</volume><issue>10</issue><spage>2711</spage><epage>2720</epage><pages>2711-2720</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>We investigate using a kernel learning machine, specifically kernel ridge regression (KRR), to predict volume fractions in typical industrial electrical impedance tomography (EIT) applications. The 'curse of dimensionality' associated with applying such methods to physically captured EIT training data is overcome with a new training method, involving sampling of training data during rapid random repositioning of a set of physical objects in the measurement plane. We compare the performance to multi-layer perceptron (MLP) neural networks which appear to be the most common computational intelligence approach to the EIT reconstruction problem. We use empirically trained static situations so as to compare the results to previous research. Dynamic situations are also investigated, and KRR is shown to outperform MLP methods in both cases. Furthermore, KRR is shown to be a useful tool in EIT for extracting process information from industrial flows without first performing conventional image reconstruction.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-0233/17/10/025</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2006-10, Vol.17 (10), p.2711-2720
issn 0957-0233
1361-6501
language eng
recordid cdi_proquest_miscellaneous_29305736
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Kernel ridge regression for volume fraction prediction in electrical impedance tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20ridge%20regression%20for%20volume%20fraction%20prediction%20in%20electrical%20impedance%20tomography&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Goldswain,%20G&rft.date=2006-10-01&rft.volume=17&rft.issue=10&rft.spage=2711&rft.epage=2720&rft.pages=2711-2720&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/0957-0233/17/10/025&rft_dat=%3Cproquest_cross%3E29305736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29305736&rft_id=info:pmid/&rfr_iscdi=true