Trinuclear Cu-based covalent organic framework: π-conjugated framework regulating electron delocalization to promote photoreduction CO2

[Display omitted] •A novel 2D-COF (CuABD) realizes efficient charge transfer within the framework.•The HCOOH production rate over CuABD can reach 1.26mmolg−1h−1.•The π-conjugated skeleton propelled electronic delocalization and carrier transport. Sunlight-driven CO2 reduction to value-added chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-05, Vol.662, p.807-813
Hauptverfasser: Dong, Man, Pan, Qingqing, Meng, Fanfei, Yao, Xiaohui, You, Siqi, Shan, Guogang, Sun, Chunyi, Wang, Xinlong, Su, Zhongmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue
container_start_page 807
container_title Journal of colloid and interface science
container_volume 662
creator Dong, Man
Pan, Qingqing
Meng, Fanfei
Yao, Xiaohui
You, Siqi
Shan, Guogang
Sun, Chunyi
Wang, Xinlong
Su, Zhongmin
description [Display omitted] •A novel 2D-COF (CuABD) realizes efficient charge transfer within the framework.•The HCOOH production rate over CuABD can reach 1.26mmolg−1h−1.•The π-conjugated skeleton propelled electronic delocalization and carrier transport. Sunlight-driven CO2 reduction to value-added chemicals is an effective strategy to promote carbon recycling. The exploration of catalysts with efficient charge separation is crucially important for highly efficient CO2 photoreduction. In this work, the preparation of metal-cluster-based covalent organic framework (CuABD) integrated features from both metal organic frameworks (MOFs) and covalent organic frameworks (COFs) through the condensation of diamines and functionalized trinuclear copper clusters demonstrate a thoughtful design strategy. The reported yield of 1.3 mmol g−1 h−1 for formic acid (HCOOH) under simulated solar irradiation is impressive, surpassing the performance of many COF- and MOF-based catalysts previously reported. Compared to its isomorphic metal-free structure (named BDFTD) and bare trinuclear Cu cluster which present extremely poor catalytic activities, CuABD displays remarkably enhanced CO2 reduction activity. Experimental and theoretical investigations reveal that the efficient charge transfer between diamine monomer and cyclic trinuclear copper (I) units, and the electron delocalization of the π-conjugated framework are responsible for the appealing catalytic performance. In summary, the work presents a well-structured and scientifically sound exploration of a metal-cluster-based covalent organic framework for efficient CO2 reduction under sunlight.
doi_str_mv 10.1016/j.jcis.2024.02.129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2930474508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724003734</els_id><sourcerecordid>2930474508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-2d205c73a2f451da651feb0debff0c86218e5f34f6c455091fa20430a6b82b3c3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi1EJZa2L8DJRy4JYztONhUXtGqhUqVeytlynPHi1BsvttOKnjjydn0lvF3UI6fRzP__o5mPkA8Magas_TTVk3Gp5sCbGnjNeP-GrBj0suoYiLdkBcBZ1Xd99468T2kCYEzKfkX-3EU3L8ajjnSzVINOOFITHrTHOdMQt3p2htqod_gY4v0Fff5dmTBPy1bn4nwVaMTt4nV285aiR5NjmOmIPhjt3VOZlzYHuo9hFzLS_Y-QQ8RxMS_K5pafkROrfcLzf_WUfL-6vNt8q25uv15vvtxURgiRKz5ykKYTmttGslG3klkcYMTBWjDrlrM1Sisa25pGSuiZ1RwaAbod1nwQRpySj8e95ZSfC6asdi4Z9F7PGJakeC-g6RoJ62LlR6uJIaWIVu2j2-n4SzFQB-xqUgfs6oBdAVcFewl9PoawPPHgMKpkHM4GRxcLFjUG97_4X-M4j9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930474508</pqid></control><display><type>article</type><title>Trinuclear Cu-based covalent organic framework: π-conjugated framework regulating electron delocalization to promote photoreduction CO2</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dong, Man ; Pan, Qingqing ; Meng, Fanfei ; Yao, Xiaohui ; You, Siqi ; Shan, Guogang ; Sun, Chunyi ; Wang, Xinlong ; Su, Zhongmin</creator><creatorcontrib>Dong, Man ; Pan, Qingqing ; Meng, Fanfei ; Yao, Xiaohui ; You, Siqi ; Shan, Guogang ; Sun, Chunyi ; Wang, Xinlong ; Su, Zhongmin</creatorcontrib><description>[Display omitted] •A novel 2D-COF (CuABD) realizes efficient charge transfer within the framework.•The HCOOH production rate over CuABD can reach 1.26mmolg−1h−1.•The π-conjugated skeleton propelled electronic delocalization and carrier transport. Sunlight-driven CO2 reduction to value-added chemicals is an effective strategy to promote carbon recycling. The exploration of catalysts with efficient charge separation is crucially important for highly efficient CO2 photoreduction. In this work, the preparation of metal-cluster-based covalent organic framework (CuABD) integrated features from both metal organic frameworks (MOFs) and covalent organic frameworks (COFs) through the condensation of diamines and functionalized trinuclear copper clusters demonstrate a thoughtful design strategy. The reported yield of 1.3 mmol g−1 h−1 for formic acid (HCOOH) under simulated solar irradiation is impressive, surpassing the performance of many COF- and MOF-based catalysts previously reported. Compared to its isomorphic metal-free structure (named BDFTD) and bare trinuclear Cu cluster which present extremely poor catalytic activities, CuABD displays remarkably enhanced CO2 reduction activity. Experimental and theoretical investigations reveal that the efficient charge transfer between diamine monomer and cyclic trinuclear copper (I) units, and the electron delocalization of the π-conjugated framework are responsible for the appealing catalytic performance. In summary, the work presents a well-structured and scientifically sound exploration of a metal-cluster-based covalent organic framework for efficient CO2 reduction under sunlight.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.02.129</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>CO2 conversion ; Covalent organic frameworks ; Electron delocalization ; Photoreduction CO2</subject><ispartof>Journal of colloid and interface science, 2024-05, Vol.662, p.807-813</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-2d205c73a2f451da651feb0debff0c86218e5f34f6c455091fa20430a6b82b3c3</citedby><cites>FETCH-LOGICAL-c333t-2d205c73a2f451da651feb0debff0c86218e5f34f6c455091fa20430a6b82b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.02.129$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dong, Man</creatorcontrib><creatorcontrib>Pan, Qingqing</creatorcontrib><creatorcontrib>Meng, Fanfei</creatorcontrib><creatorcontrib>Yao, Xiaohui</creatorcontrib><creatorcontrib>You, Siqi</creatorcontrib><creatorcontrib>Shan, Guogang</creatorcontrib><creatorcontrib>Sun, Chunyi</creatorcontrib><creatorcontrib>Wang, Xinlong</creatorcontrib><creatorcontrib>Su, Zhongmin</creatorcontrib><title>Trinuclear Cu-based covalent organic framework: π-conjugated framework regulating electron delocalization to promote photoreduction CO2</title><title>Journal of colloid and interface science</title><description>[Display omitted] •A novel 2D-COF (CuABD) realizes efficient charge transfer within the framework.•The HCOOH production rate over CuABD can reach 1.26mmolg−1h−1.•The π-conjugated skeleton propelled electronic delocalization and carrier transport. Sunlight-driven CO2 reduction to value-added chemicals is an effective strategy to promote carbon recycling. The exploration of catalysts with efficient charge separation is crucially important for highly efficient CO2 photoreduction. In this work, the preparation of metal-cluster-based covalent organic framework (CuABD) integrated features from both metal organic frameworks (MOFs) and covalent organic frameworks (COFs) through the condensation of diamines and functionalized trinuclear copper clusters demonstrate a thoughtful design strategy. The reported yield of 1.3 mmol g−1 h−1 for formic acid (HCOOH) under simulated solar irradiation is impressive, surpassing the performance of many COF- and MOF-based catalysts previously reported. Compared to its isomorphic metal-free structure (named BDFTD) and bare trinuclear Cu cluster which present extremely poor catalytic activities, CuABD displays remarkably enhanced CO2 reduction activity. Experimental and theoretical investigations reveal that the efficient charge transfer between diamine monomer and cyclic trinuclear copper (I) units, and the electron delocalization of the π-conjugated framework are responsible for the appealing catalytic performance. In summary, the work presents a well-structured and scientifically sound exploration of a metal-cluster-based covalent organic framework for efficient CO2 reduction under sunlight.</description><subject>CO2 conversion</subject><subject>Covalent organic frameworks</subject><subject>Electron delocalization</subject><subject>Photoreduction CO2</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi1EJZa2L8DJRy4JYztONhUXtGqhUqVeytlynPHi1BsvttOKnjjydn0lvF3UI6fRzP__o5mPkA8Magas_TTVk3Gp5sCbGnjNeP-GrBj0suoYiLdkBcBZ1Xd99468T2kCYEzKfkX-3EU3L8ajjnSzVINOOFITHrTHOdMQt3p2htqod_gY4v0Fff5dmTBPy1bn4nwVaMTt4nV285aiR5NjmOmIPhjt3VOZlzYHuo9hFzLS_Y-QQ8RxMS_K5pafkROrfcLzf_WUfL-6vNt8q25uv15vvtxURgiRKz5ykKYTmttGslG3klkcYMTBWjDrlrM1Sisa25pGSuiZ1RwaAbod1nwQRpySj8e95ZSfC6asdi4Z9F7PGJakeC-g6RoJ62LlR6uJIaWIVu2j2-n4SzFQB-xqUgfs6oBdAVcFewl9PoawPPHgMKpkHM4GRxcLFjUG97_4X-M4j9A</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Dong, Man</creator><creator>Pan, Qingqing</creator><creator>Meng, Fanfei</creator><creator>Yao, Xiaohui</creator><creator>You, Siqi</creator><creator>Shan, Guogang</creator><creator>Sun, Chunyi</creator><creator>Wang, Xinlong</creator><creator>Su, Zhongmin</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240515</creationdate><title>Trinuclear Cu-based covalent organic framework: π-conjugated framework regulating electron delocalization to promote photoreduction CO2</title><author>Dong, Man ; Pan, Qingqing ; Meng, Fanfei ; Yao, Xiaohui ; You, Siqi ; Shan, Guogang ; Sun, Chunyi ; Wang, Xinlong ; Su, Zhongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-2d205c73a2f451da651feb0debff0c86218e5f34f6c455091fa20430a6b82b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CO2 conversion</topic><topic>Covalent organic frameworks</topic><topic>Electron delocalization</topic><topic>Photoreduction CO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Man</creatorcontrib><creatorcontrib>Pan, Qingqing</creatorcontrib><creatorcontrib>Meng, Fanfei</creatorcontrib><creatorcontrib>Yao, Xiaohui</creatorcontrib><creatorcontrib>You, Siqi</creatorcontrib><creatorcontrib>Shan, Guogang</creatorcontrib><creatorcontrib>Sun, Chunyi</creatorcontrib><creatorcontrib>Wang, Xinlong</creatorcontrib><creatorcontrib>Su, Zhongmin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Man</au><au>Pan, Qingqing</au><au>Meng, Fanfei</au><au>Yao, Xiaohui</au><au>You, Siqi</au><au>Shan, Guogang</au><au>Sun, Chunyi</au><au>Wang, Xinlong</au><au>Su, Zhongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trinuclear Cu-based covalent organic framework: π-conjugated framework regulating electron delocalization to promote photoreduction CO2</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>662</volume><spage>807</spage><epage>813</epage><pages>807-813</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] •A novel 2D-COF (CuABD) realizes efficient charge transfer within the framework.•The HCOOH production rate over CuABD can reach 1.26mmolg−1h−1.•The π-conjugated skeleton propelled electronic delocalization and carrier transport. Sunlight-driven CO2 reduction to value-added chemicals is an effective strategy to promote carbon recycling. The exploration of catalysts with efficient charge separation is crucially important for highly efficient CO2 photoreduction. In this work, the preparation of metal-cluster-based covalent organic framework (CuABD) integrated features from both metal organic frameworks (MOFs) and covalent organic frameworks (COFs) through the condensation of diamines and functionalized trinuclear copper clusters demonstrate a thoughtful design strategy. The reported yield of 1.3 mmol g−1 h−1 for formic acid (HCOOH) under simulated solar irradiation is impressive, surpassing the performance of many COF- and MOF-based catalysts previously reported. Compared to its isomorphic metal-free structure (named BDFTD) and bare trinuclear Cu cluster which present extremely poor catalytic activities, CuABD displays remarkably enhanced CO2 reduction activity. Experimental and theoretical investigations reveal that the efficient charge transfer between diamine monomer and cyclic trinuclear copper (I) units, and the electron delocalization of the π-conjugated framework are responsible for the appealing catalytic performance. In summary, the work presents a well-structured and scientifically sound exploration of a metal-cluster-based covalent organic framework for efficient CO2 reduction under sunlight.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.02.129</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-05, Vol.662, p.807-813
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2930474508
source Elsevier ScienceDirect Journals Complete
subjects CO2 conversion
Covalent organic frameworks
Electron delocalization
Photoreduction CO2
title Trinuclear Cu-based covalent organic framework: π-conjugated framework regulating electron delocalization to promote photoreduction CO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trinuclear%20Cu-based%20covalent%20organic%20framework:%20%CF%80-conjugated%20framework%20regulating%20electron%20delocalization%20to%20promote%20photoreduction%20CO2&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Dong,%20Man&rft.date=2024-05-15&rft.volume=662&rft.spage=807&rft.epage=813&rft.pages=807-813&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.02.129&rft_dat=%3Cproquest_cross%3E2930474508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930474508&rft_id=info:pmid/&rft_els_id=S0021979724003734&rfr_iscdi=true