Numerical Simulation of the Fuel Oil Cooling Process in a Wrecked Ship
This work deals with a numerical simulation developed to predict the characteristic cooling times of a low-thermal diffusivity fuel oil confined in the tanks of a wrecked ship. A typical scenario has been introduced through the definition of tank geometries, physical boundary conditions (deep sea te...
Gespeichert in:
Veröffentlicht in: | Journal of fluids engineering 2006-11, Vol.128 (6), p.1390-1393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work deals with a numerical simulation developed to predict the characteristic cooling times of a low-thermal diffusivity fuel oil confined in the tanks of a wrecked ship. A typical scenario has been introduced through the definition of tank geometries, physical boundary conditions (deep sea temperatures), and rheological properties of the fuel oil. The fluid dynamic behavior of the oil (free convection) inside the tanks, as well as the heat exchange with surrounding sea water has been simulated using a commercial code, FLUENT, which directly solves the Navier-Stokes set of equations, including energy. The purpose is focused on the prediction of both spatial and temporal evolution of the fuel oil characteristic temperature inside the tanks. The objective is to determine the deadline in which the asymptotic temperature curve of the fuel oil converges with deep sea thermal conditions. Inspectional analysis is also outlined, as a powerful tool to predict an order of magnitude in the cooling process. |
---|---|
ISSN: | 0098-2202 1528-901X |
DOI: | 10.1115/1.2354532 |