Planning 3D Well Trajectories Using Cubic Functions
This work presents a mathematical method to design complex trajectories for three-dimensional (3D) wells. Three-dimensional cubic trajectories are obtained for various end conditions: free end, set end, free inclination/set azimuth, and set inclination/free azimuth. The resulting trajectories are sm...
Gespeichert in:
Veröffentlicht in: | Journal of energy resources technology 2006-12, Vol.128 (4), p.257-267 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a mathematical method to design complex trajectories for three-dimensional (3D) wells. Three-dimensional cubic trajectories are obtained for various end conditions: free end, set end, free inclination/set azimuth, and set inclination/free azimuth. The resulting trajectories are smooth continuous functions, which better suit the expected performance of modern rotary steerable deviation tools, in particular point-the-bit and push-the-bit systems. A continuous and gradual change in path curvature and tool face results in the smoothest trajectory for 3D wells, that in turn results in lower torque, drag, and equipment wear. The degree of freedom and the associated parameters of the 3D curves express the commitment between the average curvature to the final length of the path, which can be adjusted to fit the design requirements and to optimize the trajectory. Several numerical examples illustrate the various end conditions. The paper also presents the full mathematical results (expressions for the 3D path, actual curvature, and actual tool face). The method is directly applicable to the well planning cycle as well as to automatic and manual hole steering. |
---|---|
ISSN: | 0195-0738 1528-8994 |
DOI: | 10.1115/1.2358140 |