Regression-based CVN-K(IC) Models for hot work tool steels
Dies and tools used in hot metal forming (extrusion, forging, rolling, etc.) are exposed to high pressures, elevated temperatures, and thermo-mechanical fatigue. The most common mode of in-service die failure is fatigue fracture (brittle failure through crack propagation). Reliable determination of...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2006-08, Vol.430 (1-2), p.208-215 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dies and tools used in hot metal forming (extrusion, forging, rolling, etc.) are exposed to high pressures, elevated temperatures, and thermo-mechanical fatigue. The most common mode of in-service die failure is fatigue fracture (brittle failure through crack propagation). Reliable determination of fracture toughness of the die material is thus critically important. However, as die steels have a combination of high-hardness and high-strength, and are used at elevated temperatures, standard plane-strain fracture toughness (K(IC)) testing methods become impracticable. Alternate testing procedures such as the Charpy impact energy (CVN), together with empirical/semi-empirical correlations of K(IC) to other data, are then more viable and economical. Experimental data (values of K(IC), CVN, and HRC) of HI 3 steels have been collected through an exhaustive literature search. This data set has been augmented through in-house experimentation: samples variously heat treated (different tempering temperatures and times, and both air-cooling and oil-quenching), and tested at different working temperatures. Linear and quadratic models are proposed for determination of fracture toughness, based on experimental (in-house) and published values of Charpy impact energy (CVN) and Rockwell hardness (HRC), both at room and at elevated temperatures. |
---|---|
ISSN: | 0921-5093 |
DOI: | 10.1016/j.msea.2006.05.103 |