High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference

Potentiometric internal reference oxygen sensors are created by embedding a metal/metal oxide mixture within a yttria-stabilized zirconia oxygen-conducting ceramic superstructure. Three metal/metal oxide systems based on Pd, Ni, and Ru are examined. A static internal reference oxygen pressure is pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sens. Actuators B 2007-06, Vol.124 (1), p.192-201
Hauptverfasser: Spirig, John V., Ramamoorthy, Ramasamy, Akbar, Sheikh A., Routbort, Jules L., Singh, Dileep, Dutta, Prabir K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 192
container_title Sens. Actuators B
container_volume 124
creator Spirig, John V.
Ramamoorthy, Ramasamy
Akbar, Sheikh A.
Routbort, Jules L.
Singh, Dileep
Dutta, Prabir K.
description Potentiometric internal reference oxygen sensors are created by embedding a metal/metal oxide mixture within a yttria-stabilized zirconia oxygen-conducting ceramic superstructure. Three metal/metal oxide systems based on Pd, Ni, and Ru are examined. A static internal reference oxygen pressure is produced inside the reference chamber of the sensor at the target application temperature. The metal/metal oxide-containing reference chamber is sealed within the stabilized zirconia ceramic superstructure by a high pressure (3–6 MPa) and high temperature (1200–1300 °C) bonding method that initiates grain boundary sliding between the ceramic components. The bonding method creates ceramic joints that are pore-free and indistinguishable from the bulk ceramic. The Pd/PdO-based oxygen sensor presented in this study is capable of long-term operation and resistant to the strains of thermal cycling. The current temperature limit of the device is limited at 800 °C. As the sensor does not require reference gas plumbing there is flexibility in placement of sensors in a combustion stream. Furthermore, the sensor assembly process readily lends itself to miniaturization.
doi_str_mv 10.1016/j.snb.2006.12.022
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29295441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400506008380</els_id><sourcerecordid>1082200691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-a2ba93ee6777aa993b5db6c85ec38d265e54c5c14b95cd6cfc3e0e19c9ea28723</originalsourceid><addsrcrecordid>eNp9kcFPwyAUxonRxDn9A7zVi_HSDmgpJZ6MUWeyxIsm3gilbxtLSycwdf71Uut5F-CF3_fy3vchdElwRjApZ5vM2zqjGJcZoRmm9AhNSMXzNMecH6MJFpSlBcbsFJ15v8EYF3mJJ-h9blbrJEC3BafCzkHyY5zurVFJ_71fgU08WN-75MuEdXyrFpqkg6Da2d8ZKdNAYmwAZ2PpYAkOrIZzdLJUrYeL_3uK3h4fXu_n6eLl6fn-bpHqvOIhVbRWIgcoOedKCZHXrKlLXTGI_w0tGbBCM02KWjDdlHqpc8BAhBagaMVpPkVXY9_eByO9NgH0Oi5gQQcpSCGwiMz1yGxd_7EDH2RnvIa2VRb6nZdUUMGKgkTw5iBIcEUHj8WAkhHVrvc-ri23znTK7SMkh0jkRsZI5IBLQmWMJGpuRw1EQz4NuGHewazGuGHcpjcH1L8RzpUu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082200691</pqid></control><display><type>article</type><title>High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference</title><source>Access via ScienceDirect (Elsevier)</source><creator>Spirig, John V. ; Ramamoorthy, Ramasamy ; Akbar, Sheikh A. ; Routbort, Jules L. ; Singh, Dileep ; Dutta, Prabir K.</creator><creatorcontrib>Spirig, John V. ; Ramamoorthy, Ramasamy ; Akbar, Sheikh A. ; Routbort, Jules L. ; Singh, Dileep ; Dutta, Prabir K. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Potentiometric internal reference oxygen sensors are created by embedding a metal/metal oxide mixture within a yttria-stabilized zirconia oxygen-conducting ceramic superstructure. Three metal/metal oxide systems based on Pd, Ni, and Ru are examined. A static internal reference oxygen pressure is produced inside the reference chamber of the sensor at the target application temperature. The metal/metal oxide-containing reference chamber is sealed within the stabilized zirconia ceramic superstructure by a high pressure (3–6 MPa) and high temperature (1200–1300 °C) bonding method that initiates grain boundary sliding between the ceramic components. The bonding method creates ceramic joints that are pore-free and indistinguishable from the bulk ceramic. The Pd/PdO-based oxygen sensor presented in this study is capable of long-term operation and resistant to the strains of thermal cycling. The current temperature limit of the device is limited at 800 °C. As the sensor does not require reference gas plumbing there is flexibility in placement of sensors in a combustion stream. Furthermore, the sensor assembly process readily lends itself to miniaturization.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2006.12.022</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Ceramic bonding ; Ceramics ; Combustion sensor ; Cross-sensitivity ; Grain boundary sliding ; Harsh environment ; Metal oxides ; Palladium ; Sensors ; Superstructures ; Yttria stabilized zirconia ; Zirconium dioxide</subject><ispartof>Sens. Actuators B, 2007-06, Vol.124 (1), p.192-201</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-a2ba93ee6777aa993b5db6c85ec38d265e54c5c14b95cd6cfc3e0e19c9ea28723</citedby><cites>FETCH-LOGICAL-c387t-a2ba93ee6777aa993b5db6c85ec38d265e54c5c14b95cd6cfc3e0e19c9ea28723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2006.12.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/914909$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Spirig, John V.</creatorcontrib><creatorcontrib>Ramamoorthy, Ramasamy</creatorcontrib><creatorcontrib>Akbar, Sheikh A.</creatorcontrib><creatorcontrib>Routbort, Jules L.</creatorcontrib><creatorcontrib>Singh, Dileep</creatorcontrib><creatorcontrib>Dutta, Prabir K.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference</title><title>Sens. Actuators B</title><description>Potentiometric internal reference oxygen sensors are created by embedding a metal/metal oxide mixture within a yttria-stabilized zirconia oxygen-conducting ceramic superstructure. Three metal/metal oxide systems based on Pd, Ni, and Ru are examined. A static internal reference oxygen pressure is produced inside the reference chamber of the sensor at the target application temperature. The metal/metal oxide-containing reference chamber is sealed within the stabilized zirconia ceramic superstructure by a high pressure (3–6 MPa) and high temperature (1200–1300 °C) bonding method that initiates grain boundary sliding between the ceramic components. The bonding method creates ceramic joints that are pore-free and indistinguishable from the bulk ceramic. The Pd/PdO-based oxygen sensor presented in this study is capable of long-term operation and resistant to the strains of thermal cycling. The current temperature limit of the device is limited at 800 °C. As the sensor does not require reference gas plumbing there is flexibility in placement of sensors in a combustion stream. Furthermore, the sensor assembly process readily lends itself to miniaturization.</description><subject>Ceramic bonding</subject><subject>Ceramics</subject><subject>Combustion sensor</subject><subject>Cross-sensitivity</subject><subject>Grain boundary sliding</subject><subject>Harsh environment</subject><subject>Metal oxides</subject><subject>Palladium</subject><subject>Sensors</subject><subject>Superstructures</subject><subject>Yttria stabilized zirconia</subject><subject>Zirconium dioxide</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kcFPwyAUxonRxDn9A7zVi_HSDmgpJZ6MUWeyxIsm3gilbxtLSycwdf71Uut5F-CF3_fy3vchdElwRjApZ5vM2zqjGJcZoRmm9AhNSMXzNMecH6MJFpSlBcbsFJ15v8EYF3mJJ-h9blbrJEC3BafCzkHyY5zurVFJ_71fgU08WN-75MuEdXyrFpqkg6Da2d8ZKdNAYmwAZ2PpYAkOrIZzdLJUrYeL_3uK3h4fXu_n6eLl6fn-bpHqvOIhVbRWIgcoOedKCZHXrKlLXTGI_w0tGbBCM02KWjDdlHqpc8BAhBagaMVpPkVXY9_eByO9NgH0Oi5gQQcpSCGwiMz1yGxd_7EDH2RnvIa2VRb6nZdUUMGKgkTw5iBIcEUHj8WAkhHVrvc-ri23znTK7SMkh0jkRsZI5IBLQmWMJGpuRw1EQz4NuGHewazGuGHcpjcH1L8RzpUu</recordid><startdate>20070610</startdate><enddate>20070610</enddate><creator>Spirig, John V.</creator><creator>Ramamoorthy, Ramasamy</creator><creator>Akbar, Sheikh A.</creator><creator>Routbort, Jules L.</creator><creator>Singh, Dileep</creator><creator>Dutta, Prabir K.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20070610</creationdate><title>High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference</title><author>Spirig, John V. ; Ramamoorthy, Ramasamy ; Akbar, Sheikh A. ; Routbort, Jules L. ; Singh, Dileep ; Dutta, Prabir K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-a2ba93ee6777aa993b5db6c85ec38d265e54c5c14b95cd6cfc3e0e19c9ea28723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Ceramic bonding</topic><topic>Ceramics</topic><topic>Combustion sensor</topic><topic>Cross-sensitivity</topic><topic>Grain boundary sliding</topic><topic>Harsh environment</topic><topic>Metal oxides</topic><topic>Palladium</topic><topic>Sensors</topic><topic>Superstructures</topic><topic>Yttria stabilized zirconia</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spirig, John V.</creatorcontrib><creatorcontrib>Ramamoorthy, Ramasamy</creatorcontrib><creatorcontrib>Akbar, Sheikh A.</creatorcontrib><creatorcontrib>Routbort, Jules L.</creatorcontrib><creatorcontrib>Singh, Dileep</creatorcontrib><creatorcontrib>Dutta, Prabir K.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Sens. Actuators B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spirig, John V.</au><au>Ramamoorthy, Ramasamy</au><au>Akbar, Sheikh A.</au><au>Routbort, Jules L.</au><au>Singh, Dileep</au><au>Dutta, Prabir K.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference</atitle><jtitle>Sens. Actuators B</jtitle><date>2007-06-10</date><risdate>2007</risdate><volume>124</volume><issue>1</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Potentiometric internal reference oxygen sensors are created by embedding a metal/metal oxide mixture within a yttria-stabilized zirconia oxygen-conducting ceramic superstructure. Three metal/metal oxide systems based on Pd, Ni, and Ru are examined. A static internal reference oxygen pressure is produced inside the reference chamber of the sensor at the target application temperature. The metal/metal oxide-containing reference chamber is sealed within the stabilized zirconia ceramic superstructure by a high pressure (3–6 MPa) and high temperature (1200–1300 °C) bonding method that initiates grain boundary sliding between the ceramic components. The bonding method creates ceramic joints that are pore-free and indistinguishable from the bulk ceramic. The Pd/PdO-based oxygen sensor presented in this study is capable of long-term operation and resistant to the strains of thermal cycling. The current temperature limit of the device is limited at 800 °C. As the sensor does not require reference gas plumbing there is flexibility in placement of sensors in a combustion stream. Furthermore, the sensor assembly process readily lends itself to miniaturization.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2006.12.022</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sens. Actuators B, 2007-06, Vol.124 (1), p.192-201
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_29295441
source Access via ScienceDirect (Elsevier)
subjects Ceramic bonding
Ceramics
Combustion sensor
Cross-sensitivity
Grain boundary sliding
Harsh environment
Metal oxides
Palladium
Sensors
Superstructures
Yttria stabilized zirconia
Zirconium dioxide
title High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20zirconia%20oxygen%20sensor%20with%20sealed%20metal/metal%20oxide%20internal%20reference&rft.jtitle=Sens.%20Actuators%20B&rft.au=Spirig,%20John%20V.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2007-06-10&rft.volume=124&rft.issue=1&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2006.12.022&rft_dat=%3Cproquest_osti_%3E1082200691%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082200691&rft_id=info:pmid/&rft_els_id=S0925400506008380&rfr_iscdi=true