Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation
Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirke...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-03, Vol.24 (9), p.2719-2726 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2726 |
---|---|
container_issue | 9 |
container_start_page | 2719 |
container_title | Nano letters |
container_volume | 24 |
creator | Hou, Tailei Li, Xinyuan Zhang, Xiuming Cai, Rongsheng Wang, Yi-Chi Chen, Akang Gu, Hongfei Su, Mengyao Li, Shouyuan Li, Qizhen Zhang, Leining Haigh, Sarah J. Zhang, Jiatao |
description | Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO. |
doi_str_mv | 10.1021/acs.nanolett.3c04337 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929541025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929541025</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-962826a2f6553a6efa452be8dacb4dc8e3bf4e022ae8986305b5662eda4eb7da3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwByy8ZJPi2LEb76iiAhVPCVhHE2cCLqkNtrPg70nVwmpGV0czV4eQ85zNcsbzSzBx5sD5HlOaCcMKIeYHZJJLwTKlNT_838vimJzEuGaMaSHZhLwvkt9YQxeDqAb6DL2N0CJduYShhx8M1Dpa-YBXLx_Y9_RxfBNTGEwaAkba-UCXXWeNRZfonQ2f6FoYuTFEk-gDthaS9e6UHHXQRzzbzyl5u16-VrfZ_dPNqlrcZ8C5TplWvOQKeKekFKCwg0LyBssWTFO0pkTRdAUyzgFLXSrBZCOV4thCgc28BTElF7u7X8F_DxhTvbHRjM3BoR9izTXXshityRFlO3TUV6_9ENxYrM5ZvXVab8M_p_XeqfgFgG5vZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929541025</pqid></control><display><type>article</type><title>Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation</title><source>ACS Publications</source><creator>Hou, Tailei ; Li, Xinyuan ; Zhang, Xiuming ; Cai, Rongsheng ; Wang, Yi-Chi ; Chen, Akang ; Gu, Hongfei ; Su, Mengyao ; Li, Shouyuan ; Li, Qizhen ; Zhang, Leining ; Haigh, Sarah J. ; Zhang, Jiatao</creator><creatorcontrib>Hou, Tailei ; Li, Xinyuan ; Zhang, Xiuming ; Cai, Rongsheng ; Wang, Yi-Chi ; Chen, Akang ; Gu, Hongfei ; Su, Mengyao ; Li, Shouyuan ; Li, Qizhen ; Zhang, Leining ; Haigh, Sarah J. ; Zhang, Jiatao</creatorcontrib><description>Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c04337</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2024-03, Vol.24 (9), p.2719-2726</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8361-9631 ; 0000-0001-7414-4902 ; 0000-0003-3612-4091 ; 0000-0001-5509-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c04337$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c04337$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hou, Tailei</creatorcontrib><creatorcontrib>Li, Xinyuan</creatorcontrib><creatorcontrib>Zhang, Xiuming</creatorcontrib><creatorcontrib>Cai, Rongsheng</creatorcontrib><creatorcontrib>Wang, Yi-Chi</creatorcontrib><creatorcontrib>Chen, Akang</creatorcontrib><creatorcontrib>Gu, Hongfei</creatorcontrib><creatorcontrib>Su, Mengyao</creatorcontrib><creatorcontrib>Li, Shouyuan</creatorcontrib><creatorcontrib>Li, Qizhen</creatorcontrib><creatorcontrib>Zhang, Leining</creatorcontrib><creatorcontrib>Haigh, Sarah J.</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><title>Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwByy8ZJPi2LEb76iiAhVPCVhHE2cCLqkNtrPg70nVwmpGV0czV4eQ85zNcsbzSzBx5sD5HlOaCcMKIeYHZJJLwTKlNT_838vimJzEuGaMaSHZhLwvkt9YQxeDqAb6DL2N0CJduYShhx8M1Dpa-YBXLx_Y9_RxfBNTGEwaAkba-UCXXWeNRZfonQ2f6FoYuTFEk-gDthaS9e6UHHXQRzzbzyl5u16-VrfZ_dPNqlrcZ8C5TplWvOQKeKekFKCwg0LyBssWTFO0pkTRdAUyzgFLXSrBZCOV4thCgc28BTElF7u7X8F_DxhTvbHRjM3BoR9izTXXshityRFlO3TUV6_9ENxYrM5ZvXVab8M_p_XeqfgFgG5vZA</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Hou, Tailei</creator><creator>Li, Xinyuan</creator><creator>Zhang, Xiuming</creator><creator>Cai, Rongsheng</creator><creator>Wang, Yi-Chi</creator><creator>Chen, Akang</creator><creator>Gu, Hongfei</creator><creator>Su, Mengyao</creator><creator>Li, Shouyuan</creator><creator>Li, Qizhen</creator><creator>Zhang, Leining</creator><creator>Haigh, Sarah J.</creator><creator>Zhang, Jiatao</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8361-9631</orcidid><orcidid>https://orcid.org/0000-0001-7414-4902</orcidid><orcidid>https://orcid.org/0000-0003-3612-4091</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid></search><sort><creationdate>20240306</creationdate><title>Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation</title><author>Hou, Tailei ; Li, Xinyuan ; Zhang, Xiuming ; Cai, Rongsheng ; Wang, Yi-Chi ; Chen, Akang ; Gu, Hongfei ; Su, Mengyao ; Li, Shouyuan ; Li, Qizhen ; Zhang, Leining ; Haigh, Sarah J. ; Zhang, Jiatao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-962826a2f6553a6efa452be8dacb4dc8e3bf4e022ae8986305b5662eda4eb7da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Tailei</creatorcontrib><creatorcontrib>Li, Xinyuan</creatorcontrib><creatorcontrib>Zhang, Xiuming</creatorcontrib><creatorcontrib>Cai, Rongsheng</creatorcontrib><creatorcontrib>Wang, Yi-Chi</creatorcontrib><creatorcontrib>Chen, Akang</creatorcontrib><creatorcontrib>Gu, Hongfei</creatorcontrib><creatorcontrib>Su, Mengyao</creatorcontrib><creatorcontrib>Li, Shouyuan</creatorcontrib><creatorcontrib>Li, Qizhen</creatorcontrib><creatorcontrib>Zhang, Leining</creatorcontrib><creatorcontrib>Haigh, Sarah J.</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Tailei</au><au>Li, Xinyuan</au><au>Zhang, Xiuming</au><au>Cai, Rongsheng</au><au>Wang, Yi-Chi</au><au>Chen, Akang</au><au>Gu, Hongfei</au><au>Su, Mengyao</au><au>Li, Shouyuan</au><au>Li, Qizhen</au><au>Zhang, Leining</au><au>Haigh, Sarah J.</au><au>Zhang, Jiatao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-03-06</date><risdate>2024</risdate><volume>24</volume><issue>9</issue><spage>2719</spage><epage>2726</epage><pages>2719-2726</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.3c04337</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8361-9631</orcidid><orcidid>https://orcid.org/0000-0001-7414-4902</orcidid><orcidid>https://orcid.org/0000-0003-3612-4091</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-03, Vol.24 (9), p.2719-2726 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929541025 |
source | ACS Publications |
title | Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Au3Cu%20Palisade%20Interlayer%20in%20Core@Shell%20Nanostructures%20for%20Efficient%20Kirkendall%20Effect%20Mediation&rft.jtitle=Nano%20letters&rft.au=Hou,%20Tailei&rft.date=2024-03-06&rft.volume=24&rft.issue=9&rft.spage=2719&rft.epage=2726&rft.pages=2719-2726&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c04337&rft_dat=%3Cproquest_acs_j%3E2929541025%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929541025&rft_id=info:pmid/&rfr_iscdi=true |