Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation

Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-03, Vol.24 (9), p.2719-2726
Hauptverfasser: Hou, Tailei, Li, Xinyuan, Zhang, Xiuming, Cai, Rongsheng, Wang, Yi-Chi, Chen, Akang, Gu, Hongfei, Su, Mengyao, Li, Shouyuan, Li, Qizhen, Zhang, Leining, Haigh, Sarah J., Zhang, Jiatao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2726
container_issue 9
container_start_page 2719
container_title Nano letters
container_volume 24
creator Hou, Tailei
Li, Xinyuan
Zhang, Xiuming
Cai, Rongsheng
Wang, Yi-Chi
Chen, Akang
Gu, Hongfei
Su, Mengyao
Li, Shouyuan
Li, Qizhen
Zhang, Leining
Haigh, Sarah J.
Zhang, Jiatao
description Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.
doi_str_mv 10.1021/acs.nanolett.3c04337
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929541025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929541025</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-962826a2f6553a6efa452be8dacb4dc8e3bf4e022ae8986305b5662eda4eb7da3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwByy8ZJPi2LEb76iiAhVPCVhHE2cCLqkNtrPg70nVwmpGV0czV4eQ85zNcsbzSzBx5sD5HlOaCcMKIeYHZJJLwTKlNT_838vimJzEuGaMaSHZhLwvkt9YQxeDqAb6DL2N0CJduYShhx8M1Dpa-YBXLx_Y9_RxfBNTGEwaAkba-UCXXWeNRZfonQ2f6FoYuTFEk-gDthaS9e6UHHXQRzzbzyl5u16-VrfZ_dPNqlrcZ8C5TplWvOQKeKekFKCwg0LyBssWTFO0pkTRdAUyzgFLXSrBZCOV4thCgc28BTElF7u7X8F_DxhTvbHRjM3BoR9izTXXshityRFlO3TUV6_9ENxYrM5ZvXVab8M_p_XeqfgFgG5vZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929541025</pqid></control><display><type>article</type><title>Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation</title><source>ACS Publications</source><creator>Hou, Tailei ; Li, Xinyuan ; Zhang, Xiuming ; Cai, Rongsheng ; Wang, Yi-Chi ; Chen, Akang ; Gu, Hongfei ; Su, Mengyao ; Li, Shouyuan ; Li, Qizhen ; Zhang, Leining ; Haigh, Sarah J. ; Zhang, Jiatao</creator><creatorcontrib>Hou, Tailei ; Li, Xinyuan ; Zhang, Xiuming ; Cai, Rongsheng ; Wang, Yi-Chi ; Chen, Akang ; Gu, Hongfei ; Su, Mengyao ; Li, Shouyuan ; Li, Qizhen ; Zhang, Leining ; Haigh, Sarah J. ; Zhang, Jiatao</creatorcontrib><description>Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c04337</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2024-03, Vol.24 (9), p.2719-2726</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8361-9631 ; 0000-0001-7414-4902 ; 0000-0003-3612-4091 ; 0000-0001-5509-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c04337$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c04337$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hou, Tailei</creatorcontrib><creatorcontrib>Li, Xinyuan</creatorcontrib><creatorcontrib>Zhang, Xiuming</creatorcontrib><creatorcontrib>Cai, Rongsheng</creatorcontrib><creatorcontrib>Wang, Yi-Chi</creatorcontrib><creatorcontrib>Chen, Akang</creatorcontrib><creatorcontrib>Gu, Hongfei</creatorcontrib><creatorcontrib>Su, Mengyao</creatorcontrib><creatorcontrib>Li, Shouyuan</creatorcontrib><creatorcontrib>Li, Qizhen</creatorcontrib><creatorcontrib>Zhang, Leining</creatorcontrib><creatorcontrib>Haigh, Sarah J.</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><title>Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwByy8ZJPi2LEb76iiAhVPCVhHE2cCLqkNtrPg70nVwmpGV0czV4eQ85zNcsbzSzBx5sD5HlOaCcMKIeYHZJJLwTKlNT_838vimJzEuGaMaSHZhLwvkt9YQxeDqAb6DL2N0CJduYShhx8M1Dpa-YBXLx_Y9_RxfBNTGEwaAkba-UCXXWeNRZfonQ2f6FoYuTFEk-gDthaS9e6UHHXQRzzbzyl5u16-VrfZ_dPNqlrcZ8C5TplWvOQKeKekFKCwg0LyBssWTFO0pkTRdAUyzgFLXSrBZCOV4thCgc28BTElF7u7X8F_DxhTvbHRjM3BoR9izTXXshityRFlO3TUV6_9ENxYrM5ZvXVab8M_p_XeqfgFgG5vZA</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Hou, Tailei</creator><creator>Li, Xinyuan</creator><creator>Zhang, Xiuming</creator><creator>Cai, Rongsheng</creator><creator>Wang, Yi-Chi</creator><creator>Chen, Akang</creator><creator>Gu, Hongfei</creator><creator>Su, Mengyao</creator><creator>Li, Shouyuan</creator><creator>Li, Qizhen</creator><creator>Zhang, Leining</creator><creator>Haigh, Sarah J.</creator><creator>Zhang, Jiatao</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8361-9631</orcidid><orcidid>https://orcid.org/0000-0001-7414-4902</orcidid><orcidid>https://orcid.org/0000-0003-3612-4091</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid></search><sort><creationdate>20240306</creationdate><title>Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation</title><author>Hou, Tailei ; Li, Xinyuan ; Zhang, Xiuming ; Cai, Rongsheng ; Wang, Yi-Chi ; Chen, Akang ; Gu, Hongfei ; Su, Mengyao ; Li, Shouyuan ; Li, Qizhen ; Zhang, Leining ; Haigh, Sarah J. ; Zhang, Jiatao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-962826a2f6553a6efa452be8dacb4dc8e3bf4e022ae8986305b5662eda4eb7da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Tailei</creatorcontrib><creatorcontrib>Li, Xinyuan</creatorcontrib><creatorcontrib>Zhang, Xiuming</creatorcontrib><creatorcontrib>Cai, Rongsheng</creatorcontrib><creatorcontrib>Wang, Yi-Chi</creatorcontrib><creatorcontrib>Chen, Akang</creatorcontrib><creatorcontrib>Gu, Hongfei</creatorcontrib><creatorcontrib>Su, Mengyao</creatorcontrib><creatorcontrib>Li, Shouyuan</creatorcontrib><creatorcontrib>Li, Qizhen</creatorcontrib><creatorcontrib>Zhang, Leining</creatorcontrib><creatorcontrib>Haigh, Sarah J.</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Tailei</au><au>Li, Xinyuan</au><au>Zhang, Xiuming</au><au>Cai, Rongsheng</au><au>Wang, Yi-Chi</au><au>Chen, Akang</au><au>Gu, Hongfei</au><au>Su, Mengyao</au><au>Li, Shouyuan</au><au>Li, Qizhen</au><au>Zhang, Leining</au><au>Haigh, Sarah J.</au><au>Zhang, Jiatao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-03-06</date><risdate>2024</risdate><volume>24</volume><issue>9</issue><spage>2719</spage><epage>2726</epage><pages>2719-2726</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.3c04337</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8361-9631</orcidid><orcidid>https://orcid.org/0000-0001-7414-4902</orcidid><orcidid>https://orcid.org/0000-0003-3612-4091</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-03, Vol.24 (9), p.2719-2726
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2929541025
source ACS Publications
title Atomic Au3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Au3Cu%20Palisade%20Interlayer%20in%20Core@Shell%20Nanostructures%20for%20Efficient%20Kirkendall%20Effect%20Mediation&rft.jtitle=Nano%20letters&rft.au=Hou,%20Tailei&rft.date=2024-03-06&rft.volume=24&rft.issue=9&rft.spage=2719&rft.epage=2726&rft.pages=2719-2726&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c04337&rft_dat=%3Cproquest_acs_j%3E2929541025%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929541025&rft_id=info:pmid/&rfr_iscdi=true