The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC
The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/C...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-06, Vol.36 (23), p.e2314233-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2314233 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Ma, Zhenhui Yang, Ke Li, Da Liu, Hu Hui, Shengchong Jiang, Yuying Li, Siyuan Li, Yiming Yang, Wang Wu, Hongjing Hou, Yanglong |
description | The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single‐atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds −85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in‐depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well‐coordinated magnetic–dielectric nanocomposites for EMW absorption engineering.
The Fe4N@NGC/CeSA+Cs+NPs system is constructed to demonstrate the electron migration mechanism, where the Ce single‐atoms (SA) with +3 valence state can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles through conductive network under EMW. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance. |
doi_str_mv | 10.1002/adma.202314233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929539885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929539885</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2663-e935727ce4e0d449a96f3e060412edc59bcde95c59307bf37338d6125c3522493</originalsourceid><addsrcrecordid>eNpdkb1PwzAUxC0EEuVjZY7EwpLybMdOvFHCp9QWhiJGy01e20AShzgFivjjcVXowPTuTj89nXSEnFDoUwB2bvLK9BkwTiPG-Q7pUcFoGIESu6QHiotQySjZJwfOvQCAkiB75HuywOC6xKxrbR2MinlrusKrR1uatvjamEtrXVfU8z-wMvMauyILns07BoOps22zAY3DPPAi9XFnKxeMbL4sTefTlS1fL9wCyzK4wc_xxfg2PSJ7M1M6PP69h-Tp5nqS3oXDh9v7dDAMGyYlD9F3j1mcYYSQR5EySs44goSIMswzoaZZjkp4wSGeznjMeZJLykTGBWOR4ofkbPO3ae3bEl2nq8Jlvomp0S6dZoopwVWSCI-e_kNf7LKtfTvNQQrKEmCxp9SG-ihKXOmmLSrTrjQFvV5Cr5fQ2yX04Go02Dr-A1qmfqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065128027</pqid></control><display><type>article</type><title>The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC</title><source>Wiley Journals</source><creator>Ma, Zhenhui ; Yang, Ke ; Li, Da ; Liu, Hu ; Hui, Shengchong ; Jiang, Yuying ; Li, Siyuan ; Li, Yiming ; Yang, Wang ; Wu, Hongjing ; Hou, Yanglong</creator><creatorcontrib>Ma, Zhenhui ; Yang, Ke ; Li, Da ; Liu, Hu ; Hui, Shengchong ; Jiang, Yuying ; Li, Siyuan ; Li, Yiming ; Yang, Wang ; Wu, Hongjing ; Hou, Yanglong</creatorcontrib><description>The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single‐atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds −85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in‐depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well‐coordinated magnetic–dielectric nanocomposites for EMW absorption engineering.
The Fe4N@NGC/CeSA+Cs+NPs system is constructed to demonstrate the electron migration mechanism, where the Ce single‐atoms (SA) with +3 valence state can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles through conductive network under EMW. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202314233</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Ce single‐atoms ; Cerium oxides ; Dissipation ; Electromagnetic radiation ; electromagnetic wave absorption ; electron migration polarization ; Electrons ; FexN@NGC ; Iron nitride ; Nanocomposites ; Nanoparticles ; Optimization ; Polarization ; Valence</subject><ispartof>Advanced materials (Weinheim), 2024-06, Vol.36 (23), p.e2314233-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0579-4594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202314233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202314233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ma, Zhenhui</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Hui, Shengchong</creatorcontrib><creatorcontrib>Jiang, Yuying</creatorcontrib><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Yang, Wang</creatorcontrib><creatorcontrib>Wu, Hongjing</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><title>The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC</title><title>Advanced materials (Weinheim)</title><description>The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single‐atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds −85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in‐depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well‐coordinated magnetic–dielectric nanocomposites for EMW absorption engineering.
The Fe4N@NGC/CeSA+Cs+NPs system is constructed to demonstrate the electron migration mechanism, where the Ce single‐atoms (SA) with +3 valence state can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles through conductive network under EMW. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance.</description><subject>Absorption</subject><subject>Ce single‐atoms</subject><subject>Cerium oxides</subject><subject>Dissipation</subject><subject>Electromagnetic radiation</subject><subject>electromagnetic wave absorption</subject><subject>electron migration polarization</subject><subject>Electrons</subject><subject>FexN@NGC</subject><subject>Iron nitride</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Polarization</subject><subject>Valence</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkb1PwzAUxC0EEuVjZY7EwpLybMdOvFHCp9QWhiJGy01e20AShzgFivjjcVXowPTuTj89nXSEnFDoUwB2bvLK9BkwTiPG-Q7pUcFoGIESu6QHiotQySjZJwfOvQCAkiB75HuywOC6xKxrbR2MinlrusKrR1uatvjamEtrXVfU8z-wMvMauyILns07BoOps22zAY3DPPAi9XFnKxeMbL4sTefTlS1fL9wCyzK4wc_xxfg2PSJ7M1M6PP69h-Tp5nqS3oXDh9v7dDAMGyYlD9F3j1mcYYSQR5EySs44goSIMswzoaZZjkp4wSGeznjMeZJLykTGBWOR4ofkbPO3ae3bEl2nq8Jlvomp0S6dZoopwVWSCI-e_kNf7LKtfTvNQQrKEmCxp9SG-ihKXOmmLSrTrjQFvV5Cr5fQ2yX04Go02Dr-A1qmfqk</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ma, Zhenhui</creator><creator>Yang, Ke</creator><creator>Li, Da</creator><creator>Liu, Hu</creator><creator>Hui, Shengchong</creator><creator>Jiang, Yuying</creator><creator>Li, Siyuan</creator><creator>Li, Yiming</creator><creator>Yang, Wang</creator><creator>Wu, Hongjing</creator><creator>Hou, Yanglong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></search><sort><creationdate>20240601</creationdate><title>The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC</title><author>Ma, Zhenhui ; Yang, Ke ; Li, Da ; Liu, Hu ; Hui, Shengchong ; Jiang, Yuying ; Li, Siyuan ; Li, Yiming ; Yang, Wang ; Wu, Hongjing ; Hou, Yanglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2663-e935727ce4e0d449a96f3e060412edc59bcde95c59307bf37338d6125c3522493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Ce single‐atoms</topic><topic>Cerium oxides</topic><topic>Dissipation</topic><topic>Electromagnetic radiation</topic><topic>electromagnetic wave absorption</topic><topic>electron migration polarization</topic><topic>Electrons</topic><topic>FexN@NGC</topic><topic>Iron nitride</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Polarization</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhenhui</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Hui, Shengchong</creatorcontrib><creatorcontrib>Jiang, Yuying</creatorcontrib><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Yang, Wang</creatorcontrib><creatorcontrib>Wu, Hongjing</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhenhui</au><au>Yang, Ke</au><au>Li, Da</au><au>Liu, Hu</au><au>Hui, Shengchong</au><au>Jiang, Yuying</au><au>Li, Siyuan</au><au>Li, Yiming</au><au>Yang, Wang</au><au>Wu, Hongjing</au><au>Hou, Yanglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>36</volume><issue>23</issue><spage>e2314233</spage><epage>n/a</epage><pages>e2314233-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single‐atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds −85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in‐depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well‐coordinated magnetic–dielectric nanocomposites for EMW absorption engineering.
The Fe4N@NGC/CeSA+Cs+NPs system is constructed to demonstrate the electron migration mechanism, where the Ce single‐atoms (SA) with +3 valence state can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles through conductive network under EMW. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202314233</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-06, Vol.36 (23), p.e2314233-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929539885 |
source | Wiley Journals |
subjects | Absorption Ce single‐atoms Cerium oxides Dissipation Electromagnetic radiation electromagnetic wave absorption electron migration polarization Electrons FexN@NGC Iron nitride Nanocomposites Nanoparticles Optimization Polarization Valence |
title | The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electron%20Migration%20Polarization%20Boosting%20Electromagnetic%20Wave%20Absorption%20Based%20on%20Ce%20Atoms%20Modulated%20yolk@shell%20FexN@NGC&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ma,%20Zhenhui&rft.date=2024-06-01&rft.volume=36&rft.issue=23&rft.spage=e2314233&rft.epage=n/a&rft.pages=e2314233-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202314233&rft_dat=%3Cproquest_wiley%3E2929539885%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065128027&rft_id=info:pmid/&rfr_iscdi=true |