The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC

The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-06, Vol.36 (23), p.e2314233-n/a
Hauptverfasser: Ma, Zhenhui, Yang, Ke, Li, Da, Liu, Hu, Hui, Shengchong, Jiang, Yuying, Li, Siyuan, Li, Yiming, Yang, Wang, Wu, Hongjing, Hou, Yanglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2314233
container_title Advanced materials (Weinheim)
container_volume 36
creator Ma, Zhenhui
Yang, Ke
Li, Da
Liu, Hu
Hui, Shengchong
Jiang, Yuying
Li, Siyuan
Li, Yiming
Yang, Wang
Wu, Hongjing
Hou, Yanglong
description The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single‐atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds −85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in‐depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well‐coordinated magnetic–dielectric nanocomposites for EMW absorption engineering. The Fe4N@NGC/CeSA+Cs+NPs system is constructed to demonstrate the electron migration mechanism, where the Ce single‐atoms (SA) with +3 valence state can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles through conductive network under EMW. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance.
doi_str_mv 10.1002/adma.202314233
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929539885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929539885</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2663-e935727ce4e0d449a96f3e060412edc59bcde95c59307bf37338d6125c3522493</originalsourceid><addsrcrecordid>eNpdkb1PwzAUxC0EEuVjZY7EwpLybMdOvFHCp9QWhiJGy01e20AShzgFivjjcVXowPTuTj89nXSEnFDoUwB2bvLK9BkwTiPG-Q7pUcFoGIESu6QHiotQySjZJwfOvQCAkiB75HuywOC6xKxrbR2MinlrusKrR1uatvjamEtrXVfU8z-wMvMauyILns07BoOps22zAY3DPPAi9XFnKxeMbL4sTefTlS1fL9wCyzK4wc_xxfg2PSJ7M1M6PP69h-Tp5nqS3oXDh9v7dDAMGyYlD9F3j1mcYYSQR5EySs44goSIMswzoaZZjkp4wSGeznjMeZJLykTGBWOR4ofkbPO3ae3bEl2nq8Jlvomp0S6dZoopwVWSCI-e_kNf7LKtfTvNQQrKEmCxp9SG-ihKXOmmLSrTrjQFvV5Cr5fQ2yX04Go02Dr-A1qmfqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065128027</pqid></control><display><type>article</type><title>The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC</title><source>Wiley Journals</source><creator>Ma, Zhenhui ; Yang, Ke ; Li, Da ; Liu, Hu ; Hui, Shengchong ; Jiang, Yuying ; Li, Siyuan ; Li, Yiming ; Yang, Wang ; Wu, Hongjing ; Hou, Yanglong</creator><creatorcontrib>Ma, Zhenhui ; Yang, Ke ; Li, Da ; Liu, Hu ; Hui, Shengchong ; Jiang, Yuying ; Li, Siyuan ; Li, Yiming ; Yang, Wang ; Wu, Hongjing ; Hou, Yanglong</creatorcontrib><description>The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single‐atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds −85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in‐depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well‐coordinated magnetic–dielectric nanocomposites for EMW absorption engineering. The Fe4N@NGC/CeSA+Cs+NPs system is constructed to demonstrate the electron migration mechanism, where the Ce single‐atoms (SA) with +3 valence state can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles through conductive network under EMW. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202314233</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Ce single‐atoms ; Cerium oxides ; Dissipation ; Electromagnetic radiation ; electromagnetic wave absorption ; electron migration polarization ; Electrons ; FexN@NGC ; Iron nitride ; Nanocomposites ; Nanoparticles ; Optimization ; Polarization ; Valence</subject><ispartof>Advanced materials (Weinheim), 2024-06, Vol.36 (23), p.e2314233-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0579-4594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202314233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202314233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ma, Zhenhui</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Hui, Shengchong</creatorcontrib><creatorcontrib>Jiang, Yuying</creatorcontrib><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Yang, Wang</creatorcontrib><creatorcontrib>Wu, Hongjing</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><title>The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC</title><title>Advanced materials (Weinheim)</title><description>The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single‐atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds −85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in‐depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well‐coordinated magnetic–dielectric nanocomposites for EMW absorption engineering. The Fe4N@NGC/CeSA+Cs+NPs system is constructed to demonstrate the electron migration mechanism, where the Ce single‐atoms (SA) with +3 valence state can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles through conductive network under EMW. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance.</description><subject>Absorption</subject><subject>Ce single‐atoms</subject><subject>Cerium oxides</subject><subject>Dissipation</subject><subject>Electromagnetic radiation</subject><subject>electromagnetic wave absorption</subject><subject>electron migration polarization</subject><subject>Electrons</subject><subject>FexN@NGC</subject><subject>Iron nitride</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Polarization</subject><subject>Valence</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkb1PwzAUxC0EEuVjZY7EwpLybMdOvFHCp9QWhiJGy01e20AShzgFivjjcVXowPTuTj89nXSEnFDoUwB2bvLK9BkwTiPG-Q7pUcFoGIESu6QHiotQySjZJwfOvQCAkiB75HuywOC6xKxrbR2MinlrusKrR1uatvjamEtrXVfU8z-wMvMauyILns07BoOps22zAY3DPPAi9XFnKxeMbL4sTefTlS1fL9wCyzK4wc_xxfg2PSJ7M1M6PP69h-Tp5nqS3oXDh9v7dDAMGyYlD9F3j1mcYYSQR5EySs44goSIMswzoaZZjkp4wSGeznjMeZJLykTGBWOR4ofkbPO3ae3bEl2nq8Jlvomp0S6dZoopwVWSCI-e_kNf7LKtfTvNQQrKEmCxp9SG-ihKXOmmLSrTrjQFvV5Cr5fQ2yX04Go02Dr-A1qmfqk</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ma, Zhenhui</creator><creator>Yang, Ke</creator><creator>Li, Da</creator><creator>Liu, Hu</creator><creator>Hui, Shengchong</creator><creator>Jiang, Yuying</creator><creator>Li, Siyuan</creator><creator>Li, Yiming</creator><creator>Yang, Wang</creator><creator>Wu, Hongjing</creator><creator>Hou, Yanglong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></search><sort><creationdate>20240601</creationdate><title>The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC</title><author>Ma, Zhenhui ; Yang, Ke ; Li, Da ; Liu, Hu ; Hui, Shengchong ; Jiang, Yuying ; Li, Siyuan ; Li, Yiming ; Yang, Wang ; Wu, Hongjing ; Hou, Yanglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2663-e935727ce4e0d449a96f3e060412edc59bcde95c59307bf37338d6125c3522493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Ce single‐atoms</topic><topic>Cerium oxides</topic><topic>Dissipation</topic><topic>Electromagnetic radiation</topic><topic>electromagnetic wave absorption</topic><topic>electron migration polarization</topic><topic>Electrons</topic><topic>FexN@NGC</topic><topic>Iron nitride</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Polarization</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhenhui</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Hui, Shengchong</creatorcontrib><creatorcontrib>Jiang, Yuying</creatorcontrib><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Yang, Wang</creatorcontrib><creatorcontrib>Wu, Hongjing</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhenhui</au><au>Yang, Ke</au><au>Li, Da</au><au>Liu, Hu</au><au>Hui, Shengchong</au><au>Jiang, Yuying</au><au>Li, Siyuan</au><au>Li, Yiming</au><au>Yang, Wang</au><au>Wu, Hongjing</au><au>Hou, Yanglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>36</volume><issue>23</issue><spage>e2314233</spage><epage>n/a</epage><pages>e2314233-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well‐controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexN@NGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single‐atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds −85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in‐depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well‐coordinated magnetic–dielectric nanocomposites for EMW absorption engineering. The Fe4N@NGC/CeSA+Cs+NPs system is constructed to demonstrate the electron migration mechanism, where the Ce single‐atoms (SA) with +3 valence state can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles through conductive network under EMW. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202314233</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-06, Vol.36 (23), p.e2314233-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2929539885
source Wiley Journals
subjects Absorption
Ce single‐atoms
Cerium oxides
Dissipation
Electromagnetic radiation
electromagnetic wave absorption
electron migration polarization
Electrons
FexN@NGC
Iron nitride
Nanocomposites
Nanoparticles
Optimization
Polarization
Valence
title The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electron%20Migration%20Polarization%20Boosting%20Electromagnetic%20Wave%20Absorption%20Based%20on%20Ce%20Atoms%20Modulated%20yolk@shell%20FexN@NGC&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ma,%20Zhenhui&rft.date=2024-06-01&rft.volume=36&rft.issue=23&rft.spage=e2314233&rft.epage=n/a&rft.pages=e2314233-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202314233&rft_dat=%3Cproquest_wiley%3E2929539885%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065128027&rft_id=info:pmid/&rfr_iscdi=true