Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci

Current approaches for inserting autonomous transgenes into the genome, such as CRISPR–Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2025, Vol.43 (1), p.42-51
Hauptverfasser: Zhang, Xiaozhu, Van Treeck, Briana, Horton, Connor A., McIntyre, Jeremy J. R., Palm, Sarah M., Shumate, Justin L., Collins, Kathleen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 42
container_title Nature biotechnology
container_volume 43
creator Zhang, Xiaozhu
Van Treeck, Briana
Horton, Connor A.
McIntyre, Jeremy J. R.
Palm, Sarah M.
Shumate, Justin L.
Collins, Kathleen
description Current approaches for inserting autonomous transgenes into the genome, such as CRISPR–Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for site-specifically primed reverse transcription that directs transgene synthesis directly into the genome at a multicopy safe-harbor locus. PRINT uses delivery of two in vitro transcribed RNAs: messenger RNA encoding avian R2 retroelement-protein and template RNA encoding a transgene of length validated up to 4 kb. The R2 protein coordinately recognizes the target site, nicks one strand at a precise location and primes complementary DNA synthesis for stable transgene insertion. With a cultured human primary cell line, over 50% of cells can gain several 2 kb transgenes, of which more than 50% are full-length. PRINT advantages include no extragenomic DNA, limiting risk of deleterious mutagenesis and innate immune responses, and the relatively low cost, rapid production and scalability of RNA-only delivery. Transgenes are inserted into human cells by 2-RNA delivery of a retroelement protein and template.
doi_str_mv 10.1038/s41587-024-02137-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929538426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929538426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-624458e58715814bee7d089ecb7249bb22a85bfb571b01281ee4ae622ebf49053</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtaqiQqF_oAcUqZdeUmzHdpwTQqh8SEhc4GzZ2cmuaWJvbQdp_z0DS7e0Bw6WR35vnufNI-Qroz8YbfRJFkzqtqZc4GFNW28-kAMmhaqZ6tRHrOkzzKTaJ59zfqCUKqHUJ7Lf6KbtGGUHxFzZFCBnH5YVzL9s2sTi-ypBSRFGmCCUap1iAR9yNcRUlWRDXkKACl8gFR8DViVWq3myocp2gHplk0PqGHt_RPYGO2b48nofkvuLn3fnV_XN7eX1-dlN3YtWllpxIaQGtIOWmHAA7YLqDnrXctE5x7nV0g1OtsxRxjUDEBYU5-AG0VHZHJLTre56dhMsepw72dGsk5_Qk4nWm3-R4FdmGR8Nw8Ux3gpU-P6qkOLvGXIxk889jKMNEOdseMc72WjBFVK__Ud9iHMK6M80uG2uNO4ZWXzL6lPMOcGwm4ZR8xyg2QZoMEDzEqDZYNPxWx-7lj-JIaHZEjJCYQnp79_vyD4Bt0SpHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156268646</pqid></control><display><type>article</type><title>Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Zhang, Xiaozhu ; Van Treeck, Briana ; Horton, Connor A. ; McIntyre, Jeremy J. R. ; Palm, Sarah M. ; Shumate, Justin L. ; Collins, Kathleen</creator><creatorcontrib>Zhang, Xiaozhu ; Van Treeck, Briana ; Horton, Connor A. ; McIntyre, Jeremy J. R. ; Palm, Sarah M. ; Shumate, Justin L. ; Collins, Kathleen</creatorcontrib><description>Current approaches for inserting autonomous transgenes into the genome, such as CRISPR–Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for site-specifically primed reverse transcription that directs transgene synthesis directly into the genome at a multicopy safe-harbor locus. PRINT uses delivery of two in vitro transcribed RNAs: messenger RNA encoding avian R2 retroelement-protein and template RNA encoding a transgene of length validated up to 4 kb. The R2 protein coordinately recognizes the target site, nicks one strand at a precise location and primes complementary DNA synthesis for stable transgene insertion. With a cultured human primary cell line, over 50% of cells can gain several 2 kb transgenes, of which more than 50% are full-length. PRINT advantages include no extragenomic DNA, limiting risk of deleterious mutagenesis and innate immune responses, and the relatively low cost, rapid production and scalability of RNA-only delivery. Transgenes are inserted into human cells by 2-RNA delivery of a retroelement protein and template.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-024-02137-y</identifier><identifier>PMID: 38379101</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337 ; 631/337/2569 ; Agriculture ; Animals ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; CRISPR ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; Genomes ; Humans ; Immune response ; Innate immunity ; Insertion ; Life Sciences ; Loci ; Mutagenesis ; Mutagenesis, Insertional ; Protein biosynthesis ; Proteins ; Retroelements - genetics ; Reverse transcription ; Ribonucleic acid ; RNA ; Synthesis ; Transgenes</subject><ispartof>Nature biotechnology, 2025, Vol.43 (1), p.42-51</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Jan 2025</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-624458e58715814bee7d089ecb7249bb22a85bfb571b01281ee4ae622ebf49053</citedby><cites>FETCH-LOGICAL-c475t-624458e58715814bee7d089ecb7249bb22a85bfb571b01281ee4ae622ebf49053</cites><orcidid>0000-0001-6018-3556 ; 0000-0003-3172-7088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-024-02137-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-024-02137-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38379101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaozhu</creatorcontrib><creatorcontrib>Van Treeck, Briana</creatorcontrib><creatorcontrib>Horton, Connor A.</creatorcontrib><creatorcontrib>McIntyre, Jeremy J. R.</creatorcontrib><creatorcontrib>Palm, Sarah M.</creatorcontrib><creatorcontrib>Shumate, Justin L.</creatorcontrib><creatorcontrib>Collins, Kathleen</creatorcontrib><title>Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Current approaches for inserting autonomous transgenes into the genome, such as CRISPR–Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for site-specifically primed reverse transcription that directs transgene synthesis directly into the genome at a multicopy safe-harbor locus. PRINT uses delivery of two in vitro transcribed RNAs: messenger RNA encoding avian R2 retroelement-protein and template RNA encoding a transgene of length validated up to 4 kb. The R2 protein coordinately recognizes the target site, nicks one strand at a precise location and primes complementary DNA synthesis for stable transgene insertion. With a cultured human primary cell line, over 50% of cells can gain several 2 kb transgenes, of which more than 50% are full-length. PRINT advantages include no extragenomic DNA, limiting risk of deleterious mutagenesis and innate immune responses, and the relatively low cost, rapid production and scalability of RNA-only delivery. Transgenes are inserted into human cells by 2-RNA delivery of a retroelement protein and template.</description><subject>631/337</subject><subject>631/337/2569</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>Genomes</subject><subject>Humans</subject><subject>Immune response</subject><subject>Innate immunity</subject><subject>Insertion</subject><subject>Life Sciences</subject><subject>Loci</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Insertional</subject><subject>Protein biosynthesis</subject><subject>Proteins</subject><subject>Retroelements - genetics</subject><subject>Reverse transcription</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Synthesis</subject><subject>Transgenes</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAQtaqiQqF_oAcUqZdeUmzHdpwTQqh8SEhc4GzZ2cmuaWJvbQdp_z0DS7e0Bw6WR35vnufNI-Qroz8YbfRJFkzqtqZc4GFNW28-kAMmhaqZ6tRHrOkzzKTaJ59zfqCUKqHUJ7Lf6KbtGGUHxFzZFCBnH5YVzL9s2sTi-ypBSRFGmCCUap1iAR9yNcRUlWRDXkKACl8gFR8DViVWq3myocp2gHplk0PqGHt_RPYGO2b48nofkvuLn3fnV_XN7eX1-dlN3YtWllpxIaQGtIOWmHAA7YLqDnrXctE5x7nV0g1OtsxRxjUDEBYU5-AG0VHZHJLTre56dhMsepw72dGsk5_Qk4nWm3-R4FdmGR8Nw8Ux3gpU-P6qkOLvGXIxk889jKMNEOdseMc72WjBFVK__Ud9iHMK6M80uG2uNO4ZWXzL6lPMOcGwm4ZR8xyg2QZoMEDzEqDZYNPxWx-7lj-JIaHZEjJCYQnp79_vyD4Bt0SpHg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhang, Xiaozhu</creator><creator>Van Treeck, Briana</creator><creator>Horton, Connor A.</creator><creator>McIntyre, Jeremy J. R.</creator><creator>Palm, Sarah M.</creator><creator>Shumate, Justin L.</creator><creator>Collins, Kathleen</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6018-3556</orcidid><orcidid>https://orcid.org/0000-0003-3172-7088</orcidid></search><sort><creationdate>2025</creationdate><title>Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci</title><author>Zhang, Xiaozhu ; Van Treeck, Briana ; Horton, Connor A. ; McIntyre, Jeremy J. R. ; Palm, Sarah M. ; Shumate, Justin L. ; Collins, Kathleen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-624458e58715814bee7d089ecb7249bb22a85bfb571b01281ee4ae622ebf49053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>631/337</topic><topic>631/337/2569</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>Genomes</topic><topic>Humans</topic><topic>Immune response</topic><topic>Innate immunity</topic><topic>Insertion</topic><topic>Life Sciences</topic><topic>Loci</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Insertional</topic><topic>Protein biosynthesis</topic><topic>Proteins</topic><topic>Retroelements - genetics</topic><topic>Reverse transcription</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Synthesis</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaozhu</creatorcontrib><creatorcontrib>Van Treeck, Briana</creatorcontrib><creatorcontrib>Horton, Connor A.</creatorcontrib><creatorcontrib>McIntyre, Jeremy J. R.</creatorcontrib><creatorcontrib>Palm, Sarah M.</creatorcontrib><creatorcontrib>Shumate, Justin L.</creatorcontrib><creatorcontrib>Collins, Kathleen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaozhu</au><au>Van Treeck, Briana</au><au>Horton, Connor A.</au><au>McIntyre, Jeremy J. R.</au><au>Palm, Sarah M.</au><au>Shumate, Justin L.</au><au>Collins, Kathleen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2025</date><risdate>2025</risdate><volume>43</volume><issue>1</issue><spage>42</spage><epage>51</epage><pages>42-51</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Current approaches for inserting autonomous transgenes into the genome, such as CRISPR–Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for site-specifically primed reverse transcription that directs transgene synthesis directly into the genome at a multicopy safe-harbor locus. PRINT uses delivery of two in vitro transcribed RNAs: messenger RNA encoding avian R2 retroelement-protein and template RNA encoding a transgene of length validated up to 4 kb. The R2 protein coordinately recognizes the target site, nicks one strand at a precise location and primes complementary DNA synthesis for stable transgene insertion. With a cultured human primary cell line, over 50% of cells can gain several 2 kb transgenes, of which more than 50% are full-length. PRINT advantages include no extragenomic DNA, limiting risk of deleterious mutagenesis and innate immune responses, and the relatively low cost, rapid production and scalability of RNA-only delivery. Transgenes are inserted into human cells by 2-RNA delivery of a retroelement protein and template.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38379101</pmid><doi>10.1038/s41587-024-02137-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6018-3556</orcidid><orcidid>https://orcid.org/0000-0003-3172-7088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2025, Vol.43 (1), p.42-51
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_proquest_miscellaneous_2929538426
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 631/337
631/337/2569
Agriculture
Animals
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
CRISPR
Deoxyribonucleic acid
DNA
DNA biosynthesis
Genomes
Humans
Immune response
Innate immunity
Insertion
Life Sciences
Loci
Mutagenesis
Mutagenesis, Insertional
Protein biosynthesis
Proteins
Retroelements - genetics
Reverse transcription
Ribonucleic acid
RNA
Synthesis
Transgenes
title Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20eukaryotic%20retroelement%20proteins%20for%20transgene%20insertion%20into%20human%20safe-harbor%20loci&rft.jtitle=Nature%20biotechnology&rft.au=Zhang,%20Xiaozhu&rft.date=2025&rft.volume=43&rft.issue=1&rft.spage=42&rft.epage=51&rft.pages=42-51&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-024-02137-y&rft_dat=%3Cproquest_pubme%3E2929538426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156268646&rft_id=info:pmid/38379101&rfr_iscdi=true