Image Omics Nomogram Based on Incoherent Motion Diffusion-Weighted Imaging in Voxels Predicts ATRX Gene Mutation Status of Brain Glioma Patients

This study aimed to construct an imaging genomics nomogram based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to predict the status of the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene in patients with brain gliomas. We retrospectively analyzed routine M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2024-08, Vol.37 (4), p.1336-1345
Hauptverfasser: Lin, Xueyao, Wang, Chaochao, Zheng, Jingjing, Liu, Mengru, Li, Ming, Xu, Hongbin, Dong, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1345
container_issue 4
container_start_page 1336
container_title Journal of digital imaging
container_volume 37
creator Lin, Xueyao
Wang, Chaochao
Zheng, Jingjing
Liu, Mengru
Li, Ming
Xu, Hongbin
Dong, Haibo
description This study aimed to construct an imaging genomics nomogram based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to predict the status of the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene in patients with brain gliomas. We retrospectively analyzed routine MR and IVIM-DWI data from 85 patients with pathologically confirmed brain gliomas from January 2017 to May 2023. The data were divided into a training set (N=61) and a test set (N=24) in a 7:3 ratio. Regions of interest (ROIs) of brain gliomas, including the solid tumor region (rCET), edema region (rE), and necrotic region (rNec), were delineated using 3D-Slicer software and projected onto the D, D*, and f sequences. A total of 1037 features were extracted from each ROI, resulting in 3111 features per patient. Age was incorporated in the calculation of the Radscore, and a clinical-imaging genomics combined model was constructed, from which a nomogram graph was generated. Separate models were built for the D, D*, and f parameters. The AUC value of the D parameter model was 0.97 (95% CI: 0.93-1.00) in the training set and 0.91 (95% CI: 0.79-1.00) in the validation set, which was significantly higher than that of the D* parameter model (0.90, 0.82) and the f parameter model (0.89, 0.91). The imaging genomics nomogram based on IVIM-DWI can effectively predict the ATRX gene status of patients with brain gliomas, with the D parameter showing the highest efficacy.
doi_str_mv 10.1007/s10278-024-00984-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929538338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929538338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7619b02cbe3b486ecf250ed56e348757e0cdd97911f108b65ea44231aac78b2f3</originalsourceid><addsrcrecordid>eNpdUdtu1DAQtRAVrbb9AR6QJV54SfElcewn1BZYVupNUC5vluNMsq4Su9hJBX_BJ-PttlVBsjSjmXPOeOYg9JKSQ0pI_TZRwmpZEFYWhChZFuUztMdUKQumOH_-JN9FByldE0I4p5wL8gLtcslrqQTfQ39Wo-kBX4zOJnwextBHM-Jjk6DFweOVt2ENEfyEz8LkcuW967o55az4Dq5fTxm3kXC-x87jb-EXDAlfRmidnRI-uvr8Ay_BAz6bJ3Mn8CXHOeHQ4eNoMmU5uDAafJm7eUzaRzudGRIc3McF-vrxw9XJp-L0Yrk6OTotLK_EVNSCqoYw2wBvSinAdqwi0FYCeCnrqgZi21bVitKOEtmICkxZMk6NsbVsWMcX6N1W92ZuRmhtnh3NoG-iG038rYNx-t-Od2vdh1tNKc_3r0RWeHOvEMPPGdKkR5csDIPxEOakmWKqypfOb4Fe_we9DnP0eT_NicxOSCnKjGJblI0hpQjd428o0RvT9dZ0nU3Xd6brDenV0z0eKQ8W87_Qh6j1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3088968864</pqid></control><display><type>article</type><title>Image Omics Nomogram Based on Incoherent Motion Diffusion-Weighted Imaging in Voxels Predicts ATRX Gene Mutation Status of Brain Glioma Patients</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Xueyao ; Wang, Chaochao ; Zheng, Jingjing ; Liu, Mengru ; Li, Ming ; Xu, Hongbin ; Dong, Haibo</creator><creatorcontrib>Lin, Xueyao ; Wang, Chaochao ; Zheng, Jingjing ; Liu, Mengru ; Li, Ming ; Xu, Hongbin ; Dong, Haibo</creatorcontrib><description>This study aimed to construct an imaging genomics nomogram based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to predict the status of the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene in patients with brain gliomas. We retrospectively analyzed routine MR and IVIM-DWI data from 85 patients with pathologically confirmed brain gliomas from January 2017 to May 2023. The data were divided into a training set (N=61) and a test set (N=24) in a 7:3 ratio. Regions of interest (ROIs) of brain gliomas, including the solid tumor region (rCET), edema region (rE), and necrotic region (rNec), were delineated using 3D-Slicer software and projected onto the D, D*, and f sequences. A total of 1037 features were extracted from each ROI, resulting in 3111 features per patient. Age was incorporated in the calculation of the Radscore, and a clinical-imaging genomics combined model was constructed, from which a nomogram graph was generated. Separate models were built for the D, D*, and f parameters. The AUC value of the D parameter model was 0.97 (95% CI: 0.93-1.00) in the training set and 0.91 (95% CI: 0.79-1.00) in the validation set, which was significantly higher than that of the D* parameter model (0.90, 0.82) and the f parameter model (0.89, 0.91). The imaging genomics nomogram based on IVIM-DWI can effectively predict the ATRX gene status of patients with brain gliomas, with the D parameter showing the highest efficacy.</description><identifier>ISSN: 2948-2933</identifier><identifier>ISSN: 0897-1889</identifier><identifier>ISSN: 2948-2925</identifier><identifier>EISSN: 2948-2933</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-024-00984-4</identifier><identifier>PMID: 38378963</identifier><language>eng</language><publisher>Switzerland: Springer Nature B.V</publisher><subject>Adolescent ; Adult ; Aged ; ATRX protein ; Brain ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Brain tumors ; Diffusion Magnetic Resonance Imaging - methods ; Edema ; Female ; Genomics ; Glioma ; Glioma - diagnostic imaging ; Glioma - genetics ; Glioma - pathology ; Humans ; Intellectual disabilities ; Male ; Medical imaging ; Middle Aged ; Mutation ; Neuroimaging ; Nomograms ; Parameters ; Point mutation ; Retrospective Studies ; Solid tumors ; Thalassemia ; X-linked Nuclear Protein - genetics ; X-linked Nuclear Protein - metabolism ; Young Adult</subject><ispartof>Journal of digital imaging, 2024-08, Vol.37 (4), p.1336-1345</ispartof><rights>2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-7619b02cbe3b486ecf250ed56e348757e0cdd97911f108b65ea44231aac78b2f3</cites><orcidid>0009-0009-4971-0031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300756/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300756/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38378963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Xueyao</creatorcontrib><creatorcontrib>Wang, Chaochao</creatorcontrib><creatorcontrib>Zheng, Jingjing</creatorcontrib><creatorcontrib>Liu, Mengru</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Xu, Hongbin</creatorcontrib><creatorcontrib>Dong, Haibo</creatorcontrib><title>Image Omics Nomogram Based on Incoherent Motion Diffusion-Weighted Imaging in Voxels Predicts ATRX Gene Mutation Status of Brain Glioma Patients</title><title>Journal of digital imaging</title><addtitle>J Imaging Inform Med</addtitle><description>This study aimed to construct an imaging genomics nomogram based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to predict the status of the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene in patients with brain gliomas. We retrospectively analyzed routine MR and IVIM-DWI data from 85 patients with pathologically confirmed brain gliomas from January 2017 to May 2023. The data were divided into a training set (N=61) and a test set (N=24) in a 7:3 ratio. Regions of interest (ROIs) of brain gliomas, including the solid tumor region (rCET), edema region (rE), and necrotic region (rNec), were delineated using 3D-Slicer software and projected onto the D, D*, and f sequences. A total of 1037 features were extracted from each ROI, resulting in 3111 features per patient. Age was incorporated in the calculation of the Radscore, and a clinical-imaging genomics combined model was constructed, from which a nomogram graph was generated. Separate models were built for the D, D*, and f parameters. The AUC value of the D parameter model was 0.97 (95% CI: 0.93-1.00) in the training set and 0.91 (95% CI: 0.79-1.00) in the validation set, which was significantly higher than that of the D* parameter model (0.90, 0.82) and the f parameter model (0.89, 0.91). The imaging genomics nomogram based on IVIM-DWI can effectively predict the ATRX gene status of patients with brain gliomas, with the D parameter showing the highest efficacy.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>ATRX protein</subject><subject>Brain</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Edema</subject><subject>Female</subject><subject>Genomics</subject><subject>Glioma</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - genetics</subject><subject>Glioma - pathology</subject><subject>Humans</subject><subject>Intellectual disabilities</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Neuroimaging</subject><subject>Nomograms</subject><subject>Parameters</subject><subject>Point mutation</subject><subject>Retrospective Studies</subject><subject>Solid tumors</subject><subject>Thalassemia</subject><subject>X-linked Nuclear Protein - genetics</subject><subject>X-linked Nuclear Protein - metabolism</subject><subject>Young Adult</subject><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><issn>2948-2933</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUdtu1DAQtRAVrbb9AR6QJV54SfElcewn1BZYVupNUC5vluNMsq4Su9hJBX_BJ-PttlVBsjSjmXPOeOYg9JKSQ0pI_TZRwmpZEFYWhChZFuUztMdUKQumOH_-JN9FByldE0I4p5wL8gLtcslrqQTfQ39Wo-kBX4zOJnwextBHM-Jjk6DFweOVt2ENEfyEz8LkcuW967o55az4Dq5fTxm3kXC-x87jb-EXDAlfRmidnRI-uvr8Ay_BAz6bJ3Mn8CXHOeHQ4eNoMmU5uDAafJm7eUzaRzudGRIc3McF-vrxw9XJp-L0Yrk6OTotLK_EVNSCqoYw2wBvSinAdqwi0FYCeCnrqgZi21bVitKOEtmICkxZMk6NsbVsWMcX6N1W92ZuRmhtnh3NoG-iG038rYNx-t-Od2vdh1tNKc_3r0RWeHOvEMPPGdKkR5csDIPxEOakmWKqypfOb4Fe_we9DnP0eT_NicxOSCnKjGJblI0hpQjd428o0RvT9dZ0nU3Xd6brDenV0z0eKQ8W87_Qh6j1</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lin, Xueyao</creator><creator>Wang, Chaochao</creator><creator>Zheng, Jingjing</creator><creator>Liu, Mengru</creator><creator>Li, Ming</creator><creator>Xu, Hongbin</creator><creator>Dong, Haibo</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0009-4971-0031</orcidid></search><sort><creationdate>20240801</creationdate><title>Image Omics Nomogram Based on Incoherent Motion Diffusion-Weighted Imaging in Voxels Predicts ATRX Gene Mutation Status of Brain Glioma Patients</title><author>Lin, Xueyao ; Wang, Chaochao ; Zheng, Jingjing ; Liu, Mengru ; Li, Ming ; Xu, Hongbin ; Dong, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7619b02cbe3b486ecf250ed56e348757e0cdd97911f108b65ea44231aac78b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>ATRX protein</topic><topic>Brain</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Edema</topic><topic>Female</topic><topic>Genomics</topic><topic>Glioma</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - genetics</topic><topic>Glioma - pathology</topic><topic>Humans</topic><topic>Intellectual disabilities</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Neuroimaging</topic><topic>Nomograms</topic><topic>Parameters</topic><topic>Point mutation</topic><topic>Retrospective Studies</topic><topic>Solid tumors</topic><topic>Thalassemia</topic><topic>X-linked Nuclear Protein - genetics</topic><topic>X-linked Nuclear Protein - metabolism</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xueyao</creatorcontrib><creatorcontrib>Wang, Chaochao</creatorcontrib><creatorcontrib>Zheng, Jingjing</creatorcontrib><creatorcontrib>Liu, Mengru</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Xu, Hongbin</creatorcontrib><creatorcontrib>Dong, Haibo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xueyao</au><au>Wang, Chaochao</au><au>Zheng, Jingjing</au><au>Liu, Mengru</au><au>Li, Ming</au><au>Xu, Hongbin</au><au>Dong, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Omics Nomogram Based on Incoherent Motion Diffusion-Weighted Imaging in Voxels Predicts ATRX Gene Mutation Status of Brain Glioma Patients</atitle><jtitle>Journal of digital imaging</jtitle><addtitle>J Imaging Inform Med</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>1336</spage><epage>1345</epage><pages>1336-1345</pages><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><eissn>2948-2933</eissn><eissn>1618-727X</eissn><abstract>This study aimed to construct an imaging genomics nomogram based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to predict the status of the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene in patients with brain gliomas. We retrospectively analyzed routine MR and IVIM-DWI data from 85 patients with pathologically confirmed brain gliomas from January 2017 to May 2023. The data were divided into a training set (N=61) and a test set (N=24) in a 7:3 ratio. Regions of interest (ROIs) of brain gliomas, including the solid tumor region (rCET), edema region (rE), and necrotic region (rNec), were delineated using 3D-Slicer software and projected onto the D, D*, and f sequences. A total of 1037 features were extracted from each ROI, resulting in 3111 features per patient. Age was incorporated in the calculation of the Radscore, and a clinical-imaging genomics combined model was constructed, from which a nomogram graph was generated. Separate models were built for the D, D*, and f parameters. The AUC value of the D parameter model was 0.97 (95% CI: 0.93-1.00) in the training set and 0.91 (95% CI: 0.79-1.00) in the validation set, which was significantly higher than that of the D* parameter model (0.90, 0.82) and the f parameter model (0.89, 0.91). The imaging genomics nomogram based on IVIM-DWI can effectively predict the ATRX gene status of patients with brain gliomas, with the D parameter showing the highest efficacy.</abstract><cop>Switzerland</cop><pub>Springer Nature B.V</pub><pmid>38378963</pmid><doi>10.1007/s10278-024-00984-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0009-4971-0031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2948-2933
ispartof Journal of digital imaging, 2024-08, Vol.37 (4), p.1336-1345
issn 2948-2933
0897-1889
2948-2925
2948-2933
1618-727X
language eng
recordid cdi_proquest_miscellaneous_2929538338
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Adolescent
Adult
Aged
ATRX protein
Brain
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Brain tumors
Diffusion Magnetic Resonance Imaging - methods
Edema
Female
Genomics
Glioma
Glioma - diagnostic imaging
Glioma - genetics
Glioma - pathology
Humans
Intellectual disabilities
Male
Medical imaging
Middle Aged
Mutation
Neuroimaging
Nomograms
Parameters
Point mutation
Retrospective Studies
Solid tumors
Thalassemia
X-linked Nuclear Protein - genetics
X-linked Nuclear Protein - metabolism
Young Adult
title Image Omics Nomogram Based on Incoherent Motion Diffusion-Weighted Imaging in Voxels Predicts ATRX Gene Mutation Status of Brain Glioma Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Omics%20Nomogram%20Based%20on%20Incoherent%20Motion%20Diffusion-Weighted%20Imaging%20in%20Voxels%20Predicts%20ATRX%20Gene%20Mutation%20Status%20of%20Brain%20Glioma%20Patients&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Lin,%20Xueyao&rft.date=2024-08-01&rft.volume=37&rft.issue=4&rft.spage=1336&rft.epage=1345&rft.pages=1336-1345&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-024-00984-4&rft_dat=%3Cproquest_pubme%3E2929538338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3088968864&rft_id=info:pmid/38378963&rfr_iscdi=true