Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity
[Display omitted] The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-05, Vol.661, p.574-587 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | |
container_start_page | 574 |
container_title | Journal of colloid and interface science |
container_volume | 661 |
creator | Guggenberger, Patrick Priamushko, Tatiana Patil, Prathamesh Florek, Justyna Garstenauer, Daniel Mautner, Andreas Won Shin, Jae Ryoo, Ryong Pichler, Christian M. Kleitz, Freddy |
description | [Display omitted]
The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150–200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm−2), highest current density (433 mA cm−2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm−2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications. |
doi_str_mv | 10.1016/j.jcis.2024.01.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929131419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724000663</els_id><sourcerecordid>2929131419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5e5a0f58ce32ed7ce23564b406931365821d301c0499774f7461da6f6431d6ec3</originalsourceid><addsrcrecordid>eNp9kEtv1DAURi0EokPhD7BAXrJJuNevxBIbVJWHNFIlVNaW69yoHiXxYHtK5983oyksWd3FPd9ZHMbeI7QIaD7t2l2IpRUgVAvYgjYv2AbB6qZDkC_ZBkBgYzvbXbA3pewAELW2r9mF7CX0vTUbNmzTn-aW5j1lXw-ZeEhLzWmaaODluNR7KrHwNPLFLyn4UvkcH9ffTNVPPD3GgXjZx4WmwseUOS33fgkrcHP9k_tQ40Osx7fs1einQu-e7yX79fX69up7s7359uPqy7YJCqA2mrSHUfeBpKChCySkNupOgbESpdG9wEECBlDWdp0aO2Vw8GY0SuJgKMhL9vHs3ef0-0ClujmWQNPkF0qH4oQVFiUqtCsqzmjIqZRMo9vnOPt8dAjuVNft3KmuO9V1gG6tu44-PPsPdzMN_yZ_c67A5zOw5qCHSNmVEOnUI2YK1Q0p_s__BOMDi7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929131419</pqid></control><display><type>article</type><title>Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Guggenberger, Patrick ; Priamushko, Tatiana ; Patil, Prathamesh ; Florek, Justyna ; Garstenauer, Daniel ; Mautner, Andreas ; Won Shin, Jae ; Ryoo, Ryong ; Pichler, Christian M. ; Kleitz, Freddy</creator><creatorcontrib>Guggenberger, Patrick ; Priamushko, Tatiana ; Patil, Prathamesh ; Florek, Justyna ; Garstenauer, Daniel ; Mautner, Andreas ; Won Shin, Jae ; Ryoo, Ryong ; Pichler, Christian M. ; Kleitz, Freddy</creatorcontrib><description>[Display omitted]
The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150–200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm−2), highest current density (433 mA cm−2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm−2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.01.056</identifier><identifier>PMID: 38308896</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electrochemical stability ; Low-energy ion scattering ; Mixed metal oxides ; Nanocasting ; Oxygen evolution reaction ; Spinel ; Water electrolysis</subject><ispartof>Journal of colloid and interface science, 2024-05, Vol.661, p.574-587</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-5e5a0f58ce32ed7ce23564b406931365821d301c0499774f7461da6f6431d6ec3</citedby><cites>FETCH-LOGICAL-c400t-5e5a0f58ce32ed7ce23564b406931365821d301c0499774f7461da6f6431d6ec3</cites><orcidid>0000-0002-1511-7784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.01.056$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38308896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guggenberger, Patrick</creatorcontrib><creatorcontrib>Priamushko, Tatiana</creatorcontrib><creatorcontrib>Patil, Prathamesh</creatorcontrib><creatorcontrib>Florek, Justyna</creatorcontrib><creatorcontrib>Garstenauer, Daniel</creatorcontrib><creatorcontrib>Mautner, Andreas</creatorcontrib><creatorcontrib>Won Shin, Jae</creatorcontrib><creatorcontrib>Ryoo, Ryong</creatorcontrib><creatorcontrib>Pichler, Christian M.</creatorcontrib><creatorcontrib>Kleitz, Freddy</creatorcontrib><title>Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150–200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm−2), highest current density (433 mA cm−2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm−2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.</description><subject>Electrochemical stability</subject><subject>Low-energy ion scattering</subject><subject>Mixed metal oxides</subject><subject>Nanocasting</subject><subject>Oxygen evolution reaction</subject><subject>Spinel</subject><subject>Water electrolysis</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1DAURi0EokPhD7BAXrJJuNevxBIbVJWHNFIlVNaW69yoHiXxYHtK5983oyksWd3FPd9ZHMbeI7QIaD7t2l2IpRUgVAvYgjYv2AbB6qZDkC_ZBkBgYzvbXbA3pewAELW2r9mF7CX0vTUbNmzTn-aW5j1lXw-ZeEhLzWmaaODluNR7KrHwNPLFLyn4UvkcH9ffTNVPPD3GgXjZx4WmwseUOS33fgkrcHP9k_tQ40Osx7fs1einQu-e7yX79fX69up7s7359uPqy7YJCqA2mrSHUfeBpKChCySkNupOgbESpdG9wEECBlDWdp0aO2Vw8GY0SuJgKMhL9vHs3ef0-0ClujmWQNPkF0qH4oQVFiUqtCsqzmjIqZRMo9vnOPt8dAjuVNft3KmuO9V1gG6tu44-PPsPdzMN_yZ_c67A5zOw5qCHSNmVEOnUI2YK1Q0p_s__BOMDi7I</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Guggenberger, Patrick</creator><creator>Priamushko, Tatiana</creator><creator>Patil, Prathamesh</creator><creator>Florek, Justyna</creator><creator>Garstenauer, Daniel</creator><creator>Mautner, Andreas</creator><creator>Won Shin, Jae</creator><creator>Ryoo, Ryong</creator><creator>Pichler, Christian M.</creator><creator>Kleitz, Freddy</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1511-7784</orcidid></search><sort><creationdate>20240501</creationdate><title>Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity</title><author>Guggenberger, Patrick ; Priamushko, Tatiana ; Patil, Prathamesh ; Florek, Justyna ; Garstenauer, Daniel ; Mautner, Andreas ; Won Shin, Jae ; Ryoo, Ryong ; Pichler, Christian M. ; Kleitz, Freddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5e5a0f58ce32ed7ce23564b406931365821d301c0499774f7461da6f6431d6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrochemical stability</topic><topic>Low-energy ion scattering</topic><topic>Mixed metal oxides</topic><topic>Nanocasting</topic><topic>Oxygen evolution reaction</topic><topic>Spinel</topic><topic>Water electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guggenberger, Patrick</creatorcontrib><creatorcontrib>Priamushko, Tatiana</creatorcontrib><creatorcontrib>Patil, Prathamesh</creatorcontrib><creatorcontrib>Florek, Justyna</creatorcontrib><creatorcontrib>Garstenauer, Daniel</creatorcontrib><creatorcontrib>Mautner, Andreas</creatorcontrib><creatorcontrib>Won Shin, Jae</creatorcontrib><creatorcontrib>Ryoo, Ryong</creatorcontrib><creatorcontrib>Pichler, Christian M.</creatorcontrib><creatorcontrib>Kleitz, Freddy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guggenberger, Patrick</au><au>Priamushko, Tatiana</au><au>Patil, Prathamesh</au><au>Florek, Justyna</au><au>Garstenauer, Daniel</au><au>Mautner, Andreas</au><au>Won Shin, Jae</au><au>Ryoo, Ryong</au><au>Pichler, Christian M.</au><au>Kleitz, Freddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>661</volume><spage>574</spage><epage>587</epage><pages>574-587</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150–200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm−2), highest current density (433 mA cm−2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm−2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38308896</pmid><doi>10.1016/j.jcis.2024.01.056</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1511-7784</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2024-05, Vol.661, p.574-587 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929131419 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Electrochemical stability Low-energy ion scattering Mixed metal oxides Nanocasting Oxygen evolution reaction Spinel Water electrolysis |
title | Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Temperature%20controlled%20synthesis%20of%20nanocast%20mixed%20metal%20oxide%20spinels%20for%20enhanced%20OER%20activity&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Guggenberger,%20Patrick&rft.date=2024-05-01&rft.volume=661&rft.spage=574&rft.epage=587&rft.pages=574-587&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.01.056&rft_dat=%3Cproquest_cross%3E2929131419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929131419&rft_id=info:pmid/38308896&rft_els_id=S0021979724000663&rfr_iscdi=true |