Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity

[Display omitted] The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-05, Vol.661, p.574-587
Hauptverfasser: Guggenberger, Patrick, Priamushko, Tatiana, Patil, Prathamesh, Florek, Justyna, Garstenauer, Daniel, Mautner, Andreas, Won Shin, Jae, Ryoo, Ryong, Pichler, Christian M., Kleitz, Freddy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue
container_start_page 574
container_title Journal of colloid and interface science
container_volume 661
creator Guggenberger, Patrick
Priamushko, Tatiana
Patil, Prathamesh
Florek, Justyna
Garstenauer, Daniel
Mautner, Andreas
Won Shin, Jae
Ryoo, Ryong
Pichler, Christian M.
Kleitz, Freddy
description [Display omitted] The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150–200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm−2), highest current density (433 mA cm−2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm−2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.
doi_str_mv 10.1016/j.jcis.2024.01.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929131419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724000663</els_id><sourcerecordid>2929131419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5e5a0f58ce32ed7ce23564b406931365821d301c0499774f7461da6f6431d6ec3</originalsourceid><addsrcrecordid>eNp9kEtv1DAURi0EokPhD7BAXrJJuNevxBIbVJWHNFIlVNaW69yoHiXxYHtK5983oyksWd3FPd9ZHMbeI7QIaD7t2l2IpRUgVAvYgjYv2AbB6qZDkC_ZBkBgYzvbXbA3pewAELW2r9mF7CX0vTUbNmzTn-aW5j1lXw-ZeEhLzWmaaODluNR7KrHwNPLFLyn4UvkcH9ffTNVPPD3GgXjZx4WmwseUOS33fgkrcHP9k_tQ40Osx7fs1einQu-e7yX79fX69up7s7359uPqy7YJCqA2mrSHUfeBpKChCySkNupOgbESpdG9wEECBlDWdp0aO2Vw8GY0SuJgKMhL9vHs3ef0-0ClujmWQNPkF0qH4oQVFiUqtCsqzmjIqZRMo9vnOPt8dAjuVNft3KmuO9V1gG6tu44-PPsPdzMN_yZ_c67A5zOw5qCHSNmVEOnUI2YK1Q0p_s__BOMDi7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929131419</pqid></control><display><type>article</type><title>Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Guggenberger, Patrick ; Priamushko, Tatiana ; Patil, Prathamesh ; Florek, Justyna ; Garstenauer, Daniel ; Mautner, Andreas ; Won Shin, Jae ; Ryoo, Ryong ; Pichler, Christian M. ; Kleitz, Freddy</creator><creatorcontrib>Guggenberger, Patrick ; Priamushko, Tatiana ; Patil, Prathamesh ; Florek, Justyna ; Garstenauer, Daniel ; Mautner, Andreas ; Won Shin, Jae ; Ryoo, Ryong ; Pichler, Christian M. ; Kleitz, Freddy</creatorcontrib><description>[Display omitted] The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150–200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm−2), highest current density (433 mA cm−2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm−2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.01.056</identifier><identifier>PMID: 38308896</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electrochemical stability ; Low-energy ion scattering ; Mixed metal oxides ; Nanocasting ; Oxygen evolution reaction ; Spinel ; Water electrolysis</subject><ispartof>Journal of colloid and interface science, 2024-05, Vol.661, p.574-587</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-5e5a0f58ce32ed7ce23564b406931365821d301c0499774f7461da6f6431d6ec3</citedby><cites>FETCH-LOGICAL-c400t-5e5a0f58ce32ed7ce23564b406931365821d301c0499774f7461da6f6431d6ec3</cites><orcidid>0000-0002-1511-7784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.01.056$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38308896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guggenberger, Patrick</creatorcontrib><creatorcontrib>Priamushko, Tatiana</creatorcontrib><creatorcontrib>Patil, Prathamesh</creatorcontrib><creatorcontrib>Florek, Justyna</creatorcontrib><creatorcontrib>Garstenauer, Daniel</creatorcontrib><creatorcontrib>Mautner, Andreas</creatorcontrib><creatorcontrib>Won Shin, Jae</creatorcontrib><creatorcontrib>Ryoo, Ryong</creatorcontrib><creatorcontrib>Pichler, Christian M.</creatorcontrib><creatorcontrib>Kleitz, Freddy</creatorcontrib><title>Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150–200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm−2), highest current density (433 mA cm−2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm−2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.</description><subject>Electrochemical stability</subject><subject>Low-energy ion scattering</subject><subject>Mixed metal oxides</subject><subject>Nanocasting</subject><subject>Oxygen evolution reaction</subject><subject>Spinel</subject><subject>Water electrolysis</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1DAURi0EokPhD7BAXrJJuNevxBIbVJWHNFIlVNaW69yoHiXxYHtK5983oyksWd3FPd9ZHMbeI7QIaD7t2l2IpRUgVAvYgjYv2AbB6qZDkC_ZBkBgYzvbXbA3pewAELW2r9mF7CX0vTUbNmzTn-aW5j1lXw-ZeEhLzWmaaODluNR7KrHwNPLFLyn4UvkcH9ffTNVPPD3GgXjZx4WmwseUOS33fgkrcHP9k_tQ40Osx7fs1einQu-e7yX79fX69up7s7359uPqy7YJCqA2mrSHUfeBpKChCySkNupOgbESpdG9wEECBlDWdp0aO2Vw8GY0SuJgKMhL9vHs3ef0-0ClujmWQNPkF0qH4oQVFiUqtCsqzmjIqZRMo9vnOPt8dAjuVNft3KmuO9V1gG6tu44-PPsPdzMN_yZ_c67A5zOw5qCHSNmVEOnUI2YK1Q0p_s__BOMDi7I</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Guggenberger, Patrick</creator><creator>Priamushko, Tatiana</creator><creator>Patil, Prathamesh</creator><creator>Florek, Justyna</creator><creator>Garstenauer, Daniel</creator><creator>Mautner, Andreas</creator><creator>Won Shin, Jae</creator><creator>Ryoo, Ryong</creator><creator>Pichler, Christian M.</creator><creator>Kleitz, Freddy</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1511-7784</orcidid></search><sort><creationdate>20240501</creationdate><title>Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity</title><author>Guggenberger, Patrick ; Priamushko, Tatiana ; Patil, Prathamesh ; Florek, Justyna ; Garstenauer, Daniel ; Mautner, Andreas ; Won Shin, Jae ; Ryoo, Ryong ; Pichler, Christian M. ; Kleitz, Freddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5e5a0f58ce32ed7ce23564b406931365821d301c0499774f7461da6f6431d6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrochemical stability</topic><topic>Low-energy ion scattering</topic><topic>Mixed metal oxides</topic><topic>Nanocasting</topic><topic>Oxygen evolution reaction</topic><topic>Spinel</topic><topic>Water electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guggenberger, Patrick</creatorcontrib><creatorcontrib>Priamushko, Tatiana</creatorcontrib><creatorcontrib>Patil, Prathamesh</creatorcontrib><creatorcontrib>Florek, Justyna</creatorcontrib><creatorcontrib>Garstenauer, Daniel</creatorcontrib><creatorcontrib>Mautner, Andreas</creatorcontrib><creatorcontrib>Won Shin, Jae</creatorcontrib><creatorcontrib>Ryoo, Ryong</creatorcontrib><creatorcontrib>Pichler, Christian M.</creatorcontrib><creatorcontrib>Kleitz, Freddy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guggenberger, Patrick</au><au>Priamushko, Tatiana</au><au>Patil, Prathamesh</au><au>Florek, Justyna</au><au>Garstenauer, Daniel</au><au>Mautner, Andreas</au><au>Won Shin, Jae</au><au>Ryoo, Ryong</au><au>Pichler, Christian M.</au><au>Kleitz, Freddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>661</volume><spage>574</spage><epage>587</epage><pages>574-587</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150–200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm−2), highest current density (433 mA cm−2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm−2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38308896</pmid><doi>10.1016/j.jcis.2024.01.056</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1511-7784</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-05, Vol.661, p.574-587
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2929131419
source Elsevier ScienceDirect Journals Complete
subjects Electrochemical stability
Low-energy ion scattering
Mixed metal oxides
Nanocasting
Oxygen evolution reaction
Spinel
Water electrolysis
title Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Temperature%20controlled%20synthesis%20of%20nanocast%20mixed%20metal%20oxide%20spinels%20for%20enhanced%20OER%20activity&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Guggenberger,%20Patrick&rft.date=2024-05-01&rft.volume=661&rft.spage=574&rft.epage=587&rft.pages=574-587&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.01.056&rft_dat=%3Cproquest_cross%3E2929131419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929131419&rft_id=info:pmid/38308896&rft_els_id=S0021979724000663&rfr_iscdi=true