Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning

For most nanopositioning systems, maximizing positioning bandwidth to accurately track periodic and aperiodic reference signals is the primary performance goal. Closed-loop control schemes are employed to overcome the inherent performance limitations such as mechanical resonance, hysteresis and cree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2024-04, Vol.147, p.153-162
Hauptverfasser: Wang, Tiecheng, San-Millan, Andres, Aphale, Sumeet S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue
container_start_page 153
container_title ISA transactions
container_volume 147
creator Wang, Tiecheng
San-Millan, Andres
Aphale, Sumeet S.
description For most nanopositioning systems, maximizing positioning bandwidth to accurately track periodic and aperiodic reference signals is the primary performance goal. Closed-loop control schemes are employed to overcome the inherent performance limitations such as mechanical resonance, hysteresis and creep. Most reported control schemes are integer-order and combine both damping and tracking actions. In this work, fractional-order controllers from the positive position feedback family namely: the Fractional-Order Integral Resonant Control (FOIRC), the Fractional-Order Positive Position Feedback (FOPPF) controller, the Fractional-Order Positive Velocity and Position Feedback (FOPVPF) controller and the Fractional-Order Positive, Acceleration, Velocity and Position Feedback (FOPAVPF) controller are designed and analysed. Compared with their classical integer-order implementation, the fractional-order damping and tracking controllers furnish additional design (tuning) parameters, facilitating superior closed-loop bandwidth and tracking accuracy. Detailed simulated experiments are performed on recorded frequency-response data to validate the efficacy, stability and robustness of the proposed control schemes. The results show that the fractional-order versions deliver the best overall performance. •Fractional-order control improves nanopositioning systems, enhancing bandwidth and accuracy.•These controllers offer more parameters, boosting achievable bandwidth and accuracy.•Simulations confirm efficacy, stability, and robustness, even with unmodelled effects.•Achievable bandwidth increases by up to 17%, accuracy improves by 35%.•Fractional-order control allows for significant improvements in nanopositioning systems.
doi_str_mv 10.1016/j.isatra.2024.01.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929129474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057824000430</els_id><sourcerecordid>2929129474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-275670eccf5b47b584492753f4b12b39e80b6e5af77915d5be3b044df1a009d83</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVpaaZJ36AULbuxeyXLY2tTKKF_ECiBZi1k-SrRIEuupCnMK-SpK3fSLru6cPiOju49hLxh0DJg-_eH1mVdkm45cNECa6HrnpEdGwfZVIk_JzsAJhvoh_GCvMr5AAC8l-NLctGNHfCOiR15vD3qUJw9uXBPywPSFZONadHBIMXwsM0FQ6FWG-dd0QVnOp2oTdoUF4P2TUwzJuqW1f8h9SbTaKnxOmdntKcmhpKip7l-t-C9w0xrBg06xDVmtxlq_BV5YbXP-PppXpK7z59-XH9tbr5_-Xb98aYxAsbS8KHfD4DG2H4Sw9SPQsiqdVZMjE-dxBGmPfbaDoNk_dxP2E0gxGyZBpDz2F2Sd-d31xR_HjEXtbhs0HsdMB6z4pJLxqUYREXFGTUp5pzQqjW5RaeTYqC2FtRBnVtQWwsKmKotVNvbp4TjtOD8z_T37BX4cAaw7vnLYVLZOKynnl1CU9Qc3f8TfgMoAJ6n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929129474</pqid></control><display><type>article</type><title>Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Tiecheng ; San-Millan, Andres ; Aphale, Sumeet S.</creator><creatorcontrib>Wang, Tiecheng ; San-Millan, Andres ; Aphale, Sumeet S.</creatorcontrib><description>For most nanopositioning systems, maximizing positioning bandwidth to accurately track periodic and aperiodic reference signals is the primary performance goal. Closed-loop control schemes are employed to overcome the inherent performance limitations such as mechanical resonance, hysteresis and creep. Most reported control schemes are integer-order and combine both damping and tracking actions. In this work, fractional-order controllers from the positive position feedback family namely: the Fractional-Order Integral Resonant Control (FOIRC), the Fractional-Order Positive Position Feedback (FOPPF) controller, the Fractional-Order Positive Velocity and Position Feedback (FOPVPF) controller and the Fractional-Order Positive, Acceleration, Velocity and Position Feedback (FOPAVPF) controller are designed and analysed. Compared with their classical integer-order implementation, the fractional-order damping and tracking controllers furnish additional design (tuning) parameters, facilitating superior closed-loop bandwidth and tracking accuracy. Detailed simulated experiments are performed on recorded frequency-response data to validate the efficacy, stability and robustness of the proposed control schemes. The results show that the fractional-order versions deliver the best overall performance. •Fractional-order control improves nanopositioning systems, enhancing bandwidth and accuracy.•These controllers offer more parameters, boosting achievable bandwidth and accuracy.•Simulations confirm efficacy, stability, and robustness, even with unmodelled effects.•Achievable bandwidth increases by up to 17%, accuracy improves by 35%.•Fractional-order control allows for significant improvements in nanopositioning systems.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2024.01.033</identifier><identifier>PMID: 38302314</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Fractional order control ; Nanopositioning ; Piezoelectric actuators ; Robust control</subject><ispartof>ISA transactions, 2024-04, Vol.147, p.153-162</ispartof><rights>2024 University of Aberdeen</rights><rights>Copyright © 2024 University of Aberdeen. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-275670eccf5b47b584492753f4b12b39e80b6e5af77915d5be3b044df1a009d83</citedby><cites>FETCH-LOGICAL-c408t-275670eccf5b47b584492753f4b12b39e80b6e5af77915d5be3b044df1a009d83</cites><orcidid>0000-0003-4513-5163 ; 0000-0002-2394-3322 ; 0000-0002-1691-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057824000430$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38302314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tiecheng</creatorcontrib><creatorcontrib>San-Millan, Andres</creatorcontrib><creatorcontrib>Aphale, Sumeet S.</creatorcontrib><title>Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>For most nanopositioning systems, maximizing positioning bandwidth to accurately track periodic and aperiodic reference signals is the primary performance goal. Closed-loop control schemes are employed to overcome the inherent performance limitations such as mechanical resonance, hysteresis and creep. Most reported control schemes are integer-order and combine both damping and tracking actions. In this work, fractional-order controllers from the positive position feedback family namely: the Fractional-Order Integral Resonant Control (FOIRC), the Fractional-Order Positive Position Feedback (FOPPF) controller, the Fractional-Order Positive Velocity and Position Feedback (FOPVPF) controller and the Fractional-Order Positive, Acceleration, Velocity and Position Feedback (FOPAVPF) controller are designed and analysed. Compared with their classical integer-order implementation, the fractional-order damping and tracking controllers furnish additional design (tuning) parameters, facilitating superior closed-loop bandwidth and tracking accuracy. Detailed simulated experiments are performed on recorded frequency-response data to validate the efficacy, stability and robustness of the proposed control schemes. The results show that the fractional-order versions deliver the best overall performance. •Fractional-order control improves nanopositioning systems, enhancing bandwidth and accuracy.•These controllers offer more parameters, boosting achievable bandwidth and accuracy.•Simulations confirm efficacy, stability, and robustness, even with unmodelled effects.•Achievable bandwidth increases by up to 17%, accuracy improves by 35%.•Fractional-order control allows for significant improvements in nanopositioning systems.</description><subject>Fractional order control</subject><subject>Nanopositioning</subject><subject>Piezoelectric actuators</subject><subject>Robust control</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAUhUVpaaZJ36AULbuxeyXLY2tTKKF_ECiBZi1k-SrRIEuupCnMK-SpK3fSLru6cPiOju49hLxh0DJg-_eH1mVdkm45cNECa6HrnpEdGwfZVIk_JzsAJhvoh_GCvMr5AAC8l-NLctGNHfCOiR15vD3qUJw9uXBPywPSFZONadHBIMXwsM0FQ6FWG-dd0QVnOp2oTdoUF4P2TUwzJuqW1f8h9SbTaKnxOmdntKcmhpKip7l-t-C9w0xrBg06xDVmtxlq_BV5YbXP-PppXpK7z59-XH9tbr5_-Xb98aYxAsbS8KHfD4DG2H4Sw9SPQsiqdVZMjE-dxBGmPfbaDoNk_dxP2E0gxGyZBpDz2F2Sd-d31xR_HjEXtbhs0HsdMB6z4pJLxqUYREXFGTUp5pzQqjW5RaeTYqC2FtRBnVtQWwsKmKotVNvbp4TjtOD8z_T37BX4cAaw7vnLYVLZOKynnl1CU9Qc3f8TfgMoAJ6n</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Wang, Tiecheng</creator><creator>San-Millan, Andres</creator><creator>Aphale, Sumeet S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4513-5163</orcidid><orcidid>https://orcid.org/0000-0002-2394-3322</orcidid><orcidid>https://orcid.org/0000-0002-1691-1648</orcidid></search><sort><creationdate>202404</creationdate><title>Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning</title><author>Wang, Tiecheng ; San-Millan, Andres ; Aphale, Sumeet S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-275670eccf5b47b584492753f4b12b39e80b6e5af77915d5be3b044df1a009d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fractional order control</topic><topic>Nanopositioning</topic><topic>Piezoelectric actuators</topic><topic>Robust control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tiecheng</creatorcontrib><creatorcontrib>San-Millan, Andres</creatorcontrib><creatorcontrib>Aphale, Sumeet S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tiecheng</au><au>San-Millan, Andres</au><au>Aphale, Sumeet S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2024-04</date><risdate>2024</risdate><volume>147</volume><spage>153</spage><epage>162</epage><pages>153-162</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>For most nanopositioning systems, maximizing positioning bandwidth to accurately track periodic and aperiodic reference signals is the primary performance goal. Closed-loop control schemes are employed to overcome the inherent performance limitations such as mechanical resonance, hysteresis and creep. Most reported control schemes are integer-order and combine both damping and tracking actions. In this work, fractional-order controllers from the positive position feedback family namely: the Fractional-Order Integral Resonant Control (FOIRC), the Fractional-Order Positive Position Feedback (FOPPF) controller, the Fractional-Order Positive Velocity and Position Feedback (FOPVPF) controller and the Fractional-Order Positive, Acceleration, Velocity and Position Feedback (FOPAVPF) controller are designed and analysed. Compared with their classical integer-order implementation, the fractional-order damping and tracking controllers furnish additional design (tuning) parameters, facilitating superior closed-loop bandwidth and tracking accuracy. Detailed simulated experiments are performed on recorded frequency-response data to validate the efficacy, stability and robustness of the proposed control schemes. The results show that the fractional-order versions deliver the best overall performance. •Fractional-order control improves nanopositioning systems, enhancing bandwidth and accuracy.•These controllers offer more parameters, boosting achievable bandwidth and accuracy.•Simulations confirm efficacy, stability, and robustness, even with unmodelled effects.•Achievable bandwidth increases by up to 17%, accuracy improves by 35%.•Fractional-order control allows for significant improvements in nanopositioning systems.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38302314</pmid><doi>10.1016/j.isatra.2024.01.033</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4513-5163</orcidid><orcidid>https://orcid.org/0000-0002-2394-3322</orcidid><orcidid>https://orcid.org/0000-0002-1691-1648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2024-04, Vol.147, p.153-162
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2929129474
source Elsevier ScienceDirect Journals Complete
subjects Fractional order control
Nanopositioning
Piezoelectric actuators
Robust control
title Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20performance%20enhancement%20facilitated%20by%20fractional-order%20implementation%20of%20classical%20control%20strategies%20for%20nanopositioning&rft.jtitle=ISA%20transactions&rft.au=Wang,%20Tiecheng&rft.date=2024-04&rft.volume=147&rft.spage=153&rft.epage=162&rft.pages=153-162&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2024.01.033&rft_dat=%3Cproquest_cross%3E2929129474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929129474&rft_id=info:pmid/38302314&rft_els_id=S0019057824000430&rfr_iscdi=true