A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis

SUMMARY Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2024-05, Vol.118 (3), p.766-786
Hauptverfasser: Ni, Bing‐bing, Liu, Hong, Wang, Zhao‐shan, Zhang, Guo‐yun, Sang, Zi‐yang, Liu, Juan‐juan, He, Cai‐yun, Zhang, Jian‐guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 3
container_start_page 766
container_title The Plant journal : for cell and molecular biology
container_volume 118
creator Ni, Bing‐bing
Liu, Hong
Wang, Zhao‐shan
Zhang, Guo‐yun
Sang, Zi‐yang
Liu, Juan‐juan
He, Cai‐yun
Zhang, Jian‐guo
description SUMMARY Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase‐like (SCPL) and their homologs involved in HT production were determined as specific to HT‐rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia‐lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co‐expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant‐galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites. Significance Statement This study provides a significant chromosomal‐level genome assembly of Rhus chinensis, revealing evolutionary characteristics facilitating its adaptation to galling insects (Schlechtendalia chinensis). The findings reveal unique functional differentiation of tandem repeat clusters contributing to high gallotannin accumulation within S. chinensis‐induced gallnuts. The genome and the identified genes involved in this process provide invaluable genomic resources for further research.
doi_str_mv 10.1111/tpj.16631
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929068368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929068368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3131-9fd8d8efa629f8298d1aeb198b806bbca031ee149ee63e9f35c2b23aab929a233</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMo7jh68A9IwIseejYfvenkuCzrFyuKrOAtpLurZzKkk7GTdpnb3rwK_sP9JdY6qwfBIlCVqoeXKl5CnnK24hjHZbddcaUkv0cWXKqTSnL55T5ZMKNY1dRcHJFHOW8Z441U9UNyJLVoODN6Qb6f0m4zpTHlNMLN9Y_cuQB0DRG_NA3002bOSPgIMftM3_sQVnQ3pW--h0wjXFGPg_WmZCxKorvgYrm5_old6MptDybXFZ8idbGnaxdCKi5GnNPWp7yPZQOo_Jg8GFzI8OQuL8nnV-eXZ2-qiw-v356dXlQd3sQrM_S61zA4JcyghdE9d9Byo1vNVNt2jkkOwGsDoCSYQZ50ohXSudYI44SUS_LioIs3fJ0hFzv63EHAtSHN2QrkmNIS35I8_wfdpnmKuJ2VrNY1a4RpkHp5oLop5TzBYHeTH920t5zZW3csumN_u4PsszvFuR2h_0v-sQOB4wNw5QPs_69kLz--O0j-Al32njQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048407297</pqid></control><display><type>article</type><title>A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ni, Bing‐bing ; Liu, Hong ; Wang, Zhao‐shan ; Zhang, Guo‐yun ; Sang, Zi‐yang ; Liu, Juan‐juan ; He, Cai‐yun ; Zhang, Jian‐guo</creator><creatorcontrib>Ni, Bing‐bing ; Liu, Hong ; Wang, Zhao‐shan ; Zhang, Guo‐yun ; Sang, Zi‐yang ; Liu, Juan‐juan ; He, Cai‐yun ; Zhang, Jian‐guo</creatorcontrib><description>SUMMARY Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase‐like (SCPL) and their homologs involved in HT production were determined as specific to HT‐rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia‐lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co‐expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant‐galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites. Significance Statement This study provides a significant chromosomal‐level genome assembly of Rhus chinensis, revealing evolutionary characteristics facilitating its adaptation to galling insects (Schlechtendalia chinensis). The findings reveal unique functional differentiation of tandem repeat clusters contributing to high gallotannin accumulation within S. chinensis‐induced gallnuts. The genome and the identified genes involved in this process provide invaluable genomic resources for further research.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16631</identifier><identifier>PMID: 38271098</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Adaptability ; Ammonia ; Animals ; Aphids - physiology ; Biosynthesis ; Carboxylesterase ; Carboxypeptidase ; Chinese gallnut ; Chromosomes ; Chromosomes, Plant - genetics ; chromosome‐scale genome ; Clusters ; Dehydration ; Flavonoids ; functional differentiation ; Gallic acid ; Galling ; Gallotannin ; Gene duplication ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genome, Plant - genetics ; Genomes ; Genomics ; Glucosyltransferase ; Host-Parasite Interactions ; Hydrolyzable Tannins - metabolism ; Insects ; Isomers ; Metabolites ; Phenylalanine ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Rhus - genetics ; Rhus chinensis ; Rhus chinensis Mill ; Secondary metabolites ; Serine carboxypeptidase ; Shikimate dehydrogenase ; Shikimic acid ; tandem duplicate genes ; Tannins ; Transcriptomes</subject><ispartof>The Plant journal : for cell and molecular biology, 2024-05, Vol.118 (3), p.766-786</ispartof><rights>2024 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2024 Society for Experimental Biology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3131-9fd8d8efa629f8298d1aeb198b806bbca031ee149ee63e9f35c2b23aab929a233</cites><orcidid>0000-0002-7087-7030 ; 0000-0003-1670-5067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.16631$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.16631$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38271098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Bing‐bing</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Wang, Zhao‐shan</creatorcontrib><creatorcontrib>Zhang, Guo‐yun</creatorcontrib><creatorcontrib>Sang, Zi‐yang</creatorcontrib><creatorcontrib>Liu, Juan‐juan</creatorcontrib><creatorcontrib>He, Cai‐yun</creatorcontrib><creatorcontrib>Zhang, Jian‐guo</creatorcontrib><title>A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase‐like (SCPL) and their homologs involved in HT production were determined as specific to HT‐rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia‐lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co‐expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant‐galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites. Significance Statement This study provides a significant chromosomal‐level genome assembly of Rhus chinensis, revealing evolutionary characteristics facilitating its adaptation to galling insects (Schlechtendalia chinensis). The findings reveal unique functional differentiation of tandem repeat clusters contributing to high gallotannin accumulation within S. chinensis‐induced gallnuts. The genome and the identified genes involved in this process provide invaluable genomic resources for further research.</description><subject>Accumulation</subject><subject>Adaptability</subject><subject>Ammonia</subject><subject>Animals</subject><subject>Aphids - physiology</subject><subject>Biosynthesis</subject><subject>Carboxylesterase</subject><subject>Carboxypeptidase</subject><subject>Chinese gallnut</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>chromosome‐scale genome</subject><subject>Clusters</subject><subject>Dehydration</subject><subject>Flavonoids</subject><subject>functional differentiation</subject><subject>Gallic acid</subject><subject>Galling</subject><subject>Gallotannin</subject><subject>Gene duplication</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucosyltransferase</subject><subject>Host-Parasite Interactions</subject><subject>Hydrolyzable Tannins - metabolism</subject><subject>Insects</subject><subject>Isomers</subject><subject>Metabolites</subject><subject>Phenylalanine</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Rhus - genetics</subject><subject>Rhus chinensis</subject><subject>Rhus chinensis Mill</subject><subject>Secondary metabolites</subject><subject>Serine carboxypeptidase</subject><subject>Shikimate dehydrogenase</subject><subject>Shikimic acid</subject><subject>tandem duplicate genes</subject><subject>Tannins</subject><subject>Transcriptomes</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU2LFDEQhoMo7jh68A9IwIseejYfvenkuCzrFyuKrOAtpLurZzKkk7GTdpnb3rwK_sP9JdY6qwfBIlCVqoeXKl5CnnK24hjHZbddcaUkv0cWXKqTSnL55T5ZMKNY1dRcHJFHOW8Z441U9UNyJLVoODN6Qb6f0m4zpTHlNMLN9Y_cuQB0DRG_NA3002bOSPgIMftM3_sQVnQ3pW--h0wjXFGPg_WmZCxKorvgYrm5_old6MptDybXFZ8idbGnaxdCKi5GnNPWp7yPZQOo_Jg8GFzI8OQuL8nnV-eXZ2-qiw-v356dXlQd3sQrM_S61zA4JcyghdE9d9Byo1vNVNt2jkkOwGsDoCSYQZ50ohXSudYI44SUS_LioIs3fJ0hFzv63EHAtSHN2QrkmNIS35I8_wfdpnmKuJ2VrNY1a4RpkHp5oLop5TzBYHeTH920t5zZW3csumN_u4PsszvFuR2h_0v-sQOB4wNw5QPs_69kLz--O0j-Al32njQ</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ni, Bing‐bing</creator><creator>Liu, Hong</creator><creator>Wang, Zhao‐shan</creator><creator>Zhang, Guo‐yun</creator><creator>Sang, Zi‐yang</creator><creator>Liu, Juan‐juan</creator><creator>He, Cai‐yun</creator><creator>Zhang, Jian‐guo</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7087-7030</orcidid><orcidid>https://orcid.org/0000-0003-1670-5067</orcidid></search><sort><creationdate>202405</creationdate><title>A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis</title><author>Ni, Bing‐bing ; Liu, Hong ; Wang, Zhao‐shan ; Zhang, Guo‐yun ; Sang, Zi‐yang ; Liu, Juan‐juan ; He, Cai‐yun ; Zhang, Jian‐guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3131-9fd8d8efa629f8298d1aeb198b806bbca031ee149ee63e9f35c2b23aab929a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Adaptability</topic><topic>Ammonia</topic><topic>Animals</topic><topic>Aphids - physiology</topic><topic>Biosynthesis</topic><topic>Carboxylesterase</topic><topic>Carboxypeptidase</topic><topic>Chinese gallnut</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>chromosome‐scale genome</topic><topic>Clusters</topic><topic>Dehydration</topic><topic>Flavonoids</topic><topic>functional differentiation</topic><topic>Gallic acid</topic><topic>Galling</topic><topic>Gallotannin</topic><topic>Gene duplication</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucosyltransferase</topic><topic>Host-Parasite Interactions</topic><topic>Hydrolyzable Tannins - metabolism</topic><topic>Insects</topic><topic>Isomers</topic><topic>Metabolites</topic><topic>Phenylalanine</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Rhus - genetics</topic><topic>Rhus chinensis</topic><topic>Rhus chinensis Mill</topic><topic>Secondary metabolites</topic><topic>Serine carboxypeptidase</topic><topic>Shikimate dehydrogenase</topic><topic>Shikimic acid</topic><topic>tandem duplicate genes</topic><topic>Tannins</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Bing‐bing</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Wang, Zhao‐shan</creatorcontrib><creatorcontrib>Zhang, Guo‐yun</creatorcontrib><creatorcontrib>Sang, Zi‐yang</creatorcontrib><creatorcontrib>Liu, Juan‐juan</creatorcontrib><creatorcontrib>He, Cai‐yun</creatorcontrib><creatorcontrib>Zhang, Jian‐guo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Bing‐bing</au><au>Liu, Hong</au><au>Wang, Zhao‐shan</au><au>Zhang, Guo‐yun</au><au>Sang, Zi‐yang</au><au>Liu, Juan‐juan</au><au>He, Cai‐yun</au><au>Zhang, Jian‐guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2024-05</date><risdate>2024</risdate><volume>118</volume><issue>3</issue><spage>766</spage><epage>786</epage><pages>766-786</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase‐like (SCPL) and their homologs involved in HT production were determined as specific to HT‐rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia‐lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co‐expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant‐galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites. Significance Statement This study provides a significant chromosomal‐level genome assembly of Rhus chinensis, revealing evolutionary characteristics facilitating its adaptation to galling insects (Schlechtendalia chinensis). The findings reveal unique functional differentiation of tandem repeat clusters contributing to high gallotannin accumulation within S. chinensis‐induced gallnuts. The genome and the identified genes involved in this process provide invaluable genomic resources for further research.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>38271098</pmid><doi>10.1111/tpj.16631</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7087-7030</orcidid><orcidid>https://orcid.org/0000-0003-1670-5067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2024-05, Vol.118 (3), p.766-786
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2929068368
source MEDLINE; Access via Wiley Online Library
subjects Accumulation
Adaptability
Ammonia
Animals
Aphids - physiology
Biosynthesis
Carboxylesterase
Carboxypeptidase
Chinese gallnut
Chromosomes
Chromosomes, Plant - genetics
chromosome‐scale genome
Clusters
Dehydration
Flavonoids
functional differentiation
Gallic acid
Galling
Gallotannin
Gene duplication
Gene expression
Gene Expression Regulation, Plant
Genes
Genome, Plant - genetics
Genomes
Genomics
Glucosyltransferase
Host-Parasite Interactions
Hydrolyzable Tannins - metabolism
Insects
Isomers
Metabolites
Phenylalanine
Plant Proteins - genetics
Plant Proteins - metabolism
Rhus - genetics
Rhus chinensis
Rhus chinensis Mill
Secondary metabolites
Serine carboxypeptidase
Shikimate dehydrogenase
Shikimic acid
tandem duplicate genes
Tannins
Transcriptomes
title A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20chromosome%E2%80%90scale%20genome%20of%20Rhus%20chinensis%20Mill.%20provides%20new%20insights%20into%20plant%E2%80%93insect%20interaction%20and%20gallotannins%20biosynthesis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ni,%20Bing%E2%80%90bing&rft.date=2024-05&rft.volume=118&rft.issue=3&rft.spage=766&rft.epage=786&rft.pages=766-786&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16631&rft_dat=%3Cproquest_cross%3E2929068368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048407297&rft_id=info:pmid/38271098&rfr_iscdi=true