A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis
SUMMARY Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2024-05, Vol.118 (3), p.766-786 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 3 |
container_start_page | 766 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 118 |
creator | Ni, Bing‐bing Liu, Hong Wang, Zhao‐shan Zhang, Guo‐yun Sang, Zi‐yang Liu, Juan‐juan He, Cai‐yun Zhang, Jian‐guo |
description | SUMMARY
Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase‐like (SCPL) and their homologs involved in HT production were determined as specific to HT‐rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia‐lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co‐expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant‐galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites.
Significance Statement
This study provides a significant chromosomal‐level genome assembly of Rhus chinensis, revealing evolutionary characteristics facilitating its adaptation to galling insects (Schlechtendalia chinensis). The findings reveal unique functional differentiation of tandem repeat clusters contributing to high gallotannin accumulation within S. chinensis‐induced gallnuts. The genome and the identified genes involved in this process provide invaluable genomic resources for further research. |
doi_str_mv | 10.1111/tpj.16631 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929068368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929068368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3131-9fd8d8efa629f8298d1aeb198b806bbca031ee149ee63e9f35c2b23aab929a233</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMo7jh68A9IwIseejYfvenkuCzrFyuKrOAtpLurZzKkk7GTdpnb3rwK_sP9JdY6qwfBIlCVqoeXKl5CnnK24hjHZbddcaUkv0cWXKqTSnL55T5ZMKNY1dRcHJFHOW8Z441U9UNyJLVoODN6Qb6f0m4zpTHlNMLN9Y_cuQB0DRG_NA3002bOSPgIMftM3_sQVnQ3pW--h0wjXFGPg_WmZCxKorvgYrm5_old6MptDybXFZ8idbGnaxdCKi5GnNPWp7yPZQOo_Jg8GFzI8OQuL8nnV-eXZ2-qiw-v356dXlQd3sQrM_S61zA4JcyghdE9d9Byo1vNVNt2jkkOwGsDoCSYQZ50ohXSudYI44SUS_LioIs3fJ0hFzv63EHAtSHN2QrkmNIS35I8_wfdpnmKuJ2VrNY1a4RpkHp5oLop5TzBYHeTH920t5zZW3csumN_u4PsszvFuR2h_0v-sQOB4wNw5QPs_69kLz--O0j-Al32njQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048407297</pqid></control><display><type>article</type><title>A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ni, Bing‐bing ; Liu, Hong ; Wang, Zhao‐shan ; Zhang, Guo‐yun ; Sang, Zi‐yang ; Liu, Juan‐juan ; He, Cai‐yun ; Zhang, Jian‐guo</creator><creatorcontrib>Ni, Bing‐bing ; Liu, Hong ; Wang, Zhao‐shan ; Zhang, Guo‐yun ; Sang, Zi‐yang ; Liu, Juan‐juan ; He, Cai‐yun ; Zhang, Jian‐guo</creatorcontrib><description>SUMMARY
Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase‐like (SCPL) and their homologs involved in HT production were determined as specific to HT‐rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia‐lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co‐expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant‐galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites.
Significance Statement
This study provides a significant chromosomal‐level genome assembly of Rhus chinensis, revealing evolutionary characteristics facilitating its adaptation to galling insects (Schlechtendalia chinensis). The findings reveal unique functional differentiation of tandem repeat clusters contributing to high gallotannin accumulation within S. chinensis‐induced gallnuts. The genome and the identified genes involved in this process provide invaluable genomic resources for further research.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16631</identifier><identifier>PMID: 38271098</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Adaptability ; Ammonia ; Animals ; Aphids - physiology ; Biosynthesis ; Carboxylesterase ; Carboxypeptidase ; Chinese gallnut ; Chromosomes ; Chromosomes, Plant - genetics ; chromosome‐scale genome ; Clusters ; Dehydration ; Flavonoids ; functional differentiation ; Gallic acid ; Galling ; Gallotannin ; Gene duplication ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genome, Plant - genetics ; Genomes ; Genomics ; Glucosyltransferase ; Host-Parasite Interactions ; Hydrolyzable Tannins - metabolism ; Insects ; Isomers ; Metabolites ; Phenylalanine ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Rhus - genetics ; Rhus chinensis ; Rhus chinensis Mill ; Secondary metabolites ; Serine carboxypeptidase ; Shikimate dehydrogenase ; Shikimic acid ; tandem duplicate genes ; Tannins ; Transcriptomes</subject><ispartof>The Plant journal : for cell and molecular biology, 2024-05, Vol.118 (3), p.766-786</ispartof><rights>2024 Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>Copyright © 2024 Society for Experimental Biology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3131-9fd8d8efa629f8298d1aeb198b806bbca031ee149ee63e9f35c2b23aab929a233</cites><orcidid>0000-0002-7087-7030 ; 0000-0003-1670-5067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.16631$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.16631$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38271098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Bing‐bing</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Wang, Zhao‐shan</creatorcontrib><creatorcontrib>Zhang, Guo‐yun</creatorcontrib><creatorcontrib>Sang, Zi‐yang</creatorcontrib><creatorcontrib>Liu, Juan‐juan</creatorcontrib><creatorcontrib>He, Cai‐yun</creatorcontrib><creatorcontrib>Zhang, Jian‐guo</creatorcontrib><title>A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY
Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase‐like (SCPL) and their homologs involved in HT production were determined as specific to HT‐rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia‐lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co‐expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant‐galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites.
Significance Statement
This study provides a significant chromosomal‐level genome assembly of Rhus chinensis, revealing evolutionary characteristics facilitating its adaptation to galling insects (Schlechtendalia chinensis). The findings reveal unique functional differentiation of tandem repeat clusters contributing to high gallotannin accumulation within S. chinensis‐induced gallnuts. The genome and the identified genes involved in this process provide invaluable genomic resources for further research.</description><subject>Accumulation</subject><subject>Adaptability</subject><subject>Ammonia</subject><subject>Animals</subject><subject>Aphids - physiology</subject><subject>Biosynthesis</subject><subject>Carboxylesterase</subject><subject>Carboxypeptidase</subject><subject>Chinese gallnut</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>chromosome‐scale genome</subject><subject>Clusters</subject><subject>Dehydration</subject><subject>Flavonoids</subject><subject>functional differentiation</subject><subject>Gallic acid</subject><subject>Galling</subject><subject>Gallotannin</subject><subject>Gene duplication</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucosyltransferase</subject><subject>Host-Parasite Interactions</subject><subject>Hydrolyzable Tannins - metabolism</subject><subject>Insects</subject><subject>Isomers</subject><subject>Metabolites</subject><subject>Phenylalanine</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Rhus - genetics</subject><subject>Rhus chinensis</subject><subject>Rhus chinensis Mill</subject><subject>Secondary metabolites</subject><subject>Serine carboxypeptidase</subject><subject>Shikimate dehydrogenase</subject><subject>Shikimic acid</subject><subject>tandem duplicate genes</subject><subject>Tannins</subject><subject>Transcriptomes</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU2LFDEQhoMo7jh68A9IwIseejYfvenkuCzrFyuKrOAtpLurZzKkk7GTdpnb3rwK_sP9JdY6qwfBIlCVqoeXKl5CnnK24hjHZbddcaUkv0cWXKqTSnL55T5ZMKNY1dRcHJFHOW8Z441U9UNyJLVoODN6Qb6f0m4zpTHlNMLN9Y_cuQB0DRG_NA3002bOSPgIMftM3_sQVnQ3pW--h0wjXFGPg_WmZCxKorvgYrm5_old6MptDybXFZ8idbGnaxdCKi5GnNPWp7yPZQOo_Jg8GFzI8OQuL8nnV-eXZ2-qiw-v356dXlQd3sQrM_S61zA4JcyghdE9d9Byo1vNVNt2jkkOwGsDoCSYQZ50ohXSudYI44SUS_LioIs3fJ0hFzv63EHAtSHN2QrkmNIS35I8_wfdpnmKuJ2VrNY1a4RpkHp5oLop5TzBYHeTH920t5zZW3csumN_u4PsszvFuR2h_0v-sQOB4wNw5QPs_69kLz--O0j-Al32njQ</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ni, Bing‐bing</creator><creator>Liu, Hong</creator><creator>Wang, Zhao‐shan</creator><creator>Zhang, Guo‐yun</creator><creator>Sang, Zi‐yang</creator><creator>Liu, Juan‐juan</creator><creator>He, Cai‐yun</creator><creator>Zhang, Jian‐guo</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7087-7030</orcidid><orcidid>https://orcid.org/0000-0003-1670-5067</orcidid></search><sort><creationdate>202405</creationdate><title>A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis</title><author>Ni, Bing‐bing ; Liu, Hong ; Wang, Zhao‐shan ; Zhang, Guo‐yun ; Sang, Zi‐yang ; Liu, Juan‐juan ; He, Cai‐yun ; Zhang, Jian‐guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3131-9fd8d8efa629f8298d1aeb198b806bbca031ee149ee63e9f35c2b23aab929a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Adaptability</topic><topic>Ammonia</topic><topic>Animals</topic><topic>Aphids - physiology</topic><topic>Biosynthesis</topic><topic>Carboxylesterase</topic><topic>Carboxypeptidase</topic><topic>Chinese gallnut</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>chromosome‐scale genome</topic><topic>Clusters</topic><topic>Dehydration</topic><topic>Flavonoids</topic><topic>functional differentiation</topic><topic>Gallic acid</topic><topic>Galling</topic><topic>Gallotannin</topic><topic>Gene duplication</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucosyltransferase</topic><topic>Host-Parasite Interactions</topic><topic>Hydrolyzable Tannins - metabolism</topic><topic>Insects</topic><topic>Isomers</topic><topic>Metabolites</topic><topic>Phenylalanine</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Rhus - genetics</topic><topic>Rhus chinensis</topic><topic>Rhus chinensis Mill</topic><topic>Secondary metabolites</topic><topic>Serine carboxypeptidase</topic><topic>Shikimate dehydrogenase</topic><topic>Shikimic acid</topic><topic>tandem duplicate genes</topic><topic>Tannins</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Bing‐bing</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Wang, Zhao‐shan</creatorcontrib><creatorcontrib>Zhang, Guo‐yun</creatorcontrib><creatorcontrib>Sang, Zi‐yang</creatorcontrib><creatorcontrib>Liu, Juan‐juan</creatorcontrib><creatorcontrib>He, Cai‐yun</creatorcontrib><creatorcontrib>Zhang, Jian‐guo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Bing‐bing</au><au>Liu, Hong</au><au>Wang, Zhao‐shan</au><au>Zhang, Guo‐yun</au><au>Sang, Zi‐yang</au><au>Liu, Juan‐juan</au><au>He, Cai‐yun</au><au>Zhang, Jian‐guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2024-05</date><risdate>2024</risdate><volume>118</volume><issue>3</issue><spage>766</spage><epage>786</epage><pages>766-786</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY
Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal‐level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase‐like (SCPL) and their homologs involved in HT production were determined as specific to HT‐rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia‐lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co‐expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant‐galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites.
Significance Statement
This study provides a significant chromosomal‐level genome assembly of Rhus chinensis, revealing evolutionary characteristics facilitating its adaptation to galling insects (Schlechtendalia chinensis). The findings reveal unique functional differentiation of tandem repeat clusters contributing to high gallotannin accumulation within S. chinensis‐induced gallnuts. The genome and the identified genes involved in this process provide invaluable genomic resources for further research.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>38271098</pmid><doi>10.1111/tpj.16631</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7087-7030</orcidid><orcidid>https://orcid.org/0000-0003-1670-5067</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2024-05, Vol.118 (3), p.766-786 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_2929068368 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Accumulation Adaptability Ammonia Animals Aphids - physiology Biosynthesis Carboxylesterase Carboxypeptidase Chinese gallnut Chromosomes Chromosomes, Plant - genetics chromosome‐scale genome Clusters Dehydration Flavonoids functional differentiation Gallic acid Galling Gallotannin Gene duplication Gene expression Gene Expression Regulation, Plant Genes Genome, Plant - genetics Genomes Genomics Glucosyltransferase Host-Parasite Interactions Hydrolyzable Tannins - metabolism Insects Isomers Metabolites Phenylalanine Plant Proteins - genetics Plant Proteins - metabolism Rhus - genetics Rhus chinensis Rhus chinensis Mill Secondary metabolites Serine carboxypeptidase Shikimate dehydrogenase Shikimic acid tandem duplicate genes Tannins Transcriptomes |
title | A chromosome‐scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20chromosome%E2%80%90scale%20genome%20of%20Rhus%20chinensis%20Mill.%20provides%20new%20insights%20into%20plant%E2%80%93insect%20interaction%20and%20gallotannins%20biosynthesis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ni,%20Bing%E2%80%90bing&rft.date=2024-05&rft.volume=118&rft.issue=3&rft.spage=766&rft.epage=786&rft.pages=766-786&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16631&rft_dat=%3Cproquest_cross%3E2929068368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048407297&rft_id=info:pmid/38271098&rfr_iscdi=true |