Quantile difference estimation with censoring indicators missing at random
In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihoo...
Gespeichert in:
Veröffentlicht in: | Lifetime data analysis 2024-04, Vol.30 (2), p.345-382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 382 |
---|---|
container_issue | 2 |
container_start_page | 345 |
container_title | Lifetime data analysis |
container_volume | 30 |
creator | Kong, Cui-Juan Liang, Han-Ying |
description | In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods. |
doi_str_mv | 10.1007/s10985-023-09614-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929059146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2972960994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a1e04a7d59ecf49cf15bbac47a6fa167e5d2c66ab41a7c337b44ead1285d6f513</originalsourceid><addsrcrecordid>eNp9kEtLxDAYRYMozjj6B1xIwY2bat5pljL4ZEAEXYc0TTVDJxmTFvHfm7GjggtXCeHcL_c7ABwjeI4gFBcJQVmxEmJSQskRLcUOmCImcCkxlbv5TipYikrACThIaQlzSHK5DyakwqTiREzB_eOgfe86WzSubW203tjCpt6tdO-CL95d_1oY61OIzr8UzjfO6D7EVKxcSpsn3RdR-yasDsFeq7tkj7bnDDxfXz3Nb8vFw83d_HJRGoJ5X2pkIdWiYdKalkrTIlbX2lCheasRF5Y12HCua4q0MISImlKrG4Qr1vCWITIDZ-PcdQxvQ-6qchVju057G4aksMQSMokoz-jpH3QZhuhzu0wJLDmUkmYKj5SJIaVoW7WOef_4oRBUG9NqNK2yafVlWokcOtmOHuqVbX4i32ozQEYgrTfqbPz9-5-xn4poie0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2972960994</pqid></control><display><type>article</type><title>Quantile difference estimation with censoring indicators missing at random</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kong, Cui-Juan ; Liang, Han-Ying</creator><creatorcontrib>Kong, Cui-Juan ; Liang, Han-Ying</creatorcontrib><description>In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.</description><identifier>ISSN: 1380-7870</identifier><identifier>ISSN: 1572-9249</identifier><identifier>EISSN: 1572-9249</identifier><identifier>DOI: 10.1007/s10985-023-09614-7</identifier><identifier>PMID: 38238637</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic methods ; Asymptotic properties ; Computer Simulation ; Data Analysis ; Data Interpretation, Statistical ; Distribution functions ; Economics ; Empirical analysis ; Estimators ; Finance ; Health Sciences ; Humans ; Indicators ; Insurance ; Likelihood ratio ; Management ; Mathematics and Statistics ; Medicine ; Normality ; Operations Research/Decision Theory ; Probability ; Quality Control ; Quantiles ; Random variables ; Reliability ; Safety and Risk ; Statistics ; Statistics for Business ; Statistics for Life Sciences ; Survival analysis</subject><ispartof>Lifetime data analysis, 2024-04, Vol.30 (2), p.345-382</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-a1e04a7d59ecf49cf15bbac47a6fa167e5d2c66ab41a7c337b44ead1285d6f513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10985-023-09614-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10985-023-09614-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38238637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Cui-Juan</creatorcontrib><creatorcontrib>Liang, Han-Ying</creatorcontrib><title>Quantile difference estimation with censoring indicators missing at random</title><title>Lifetime data analysis</title><addtitle>Lifetime Data Anal</addtitle><addtitle>Lifetime Data Anal</addtitle><description>In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computer Simulation</subject><subject>Data Analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Distribution functions</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Estimators</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Indicators</subject><subject>Insurance</subject><subject>Likelihood ratio</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Normality</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Quality Control</subject><subject>Quantiles</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Life Sciences</subject><subject>Survival analysis</subject><issn>1380-7870</issn><issn>1572-9249</issn><issn>1572-9249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAYRYMozjj6B1xIwY2bat5pljL4ZEAEXYc0TTVDJxmTFvHfm7GjggtXCeHcL_c7ABwjeI4gFBcJQVmxEmJSQskRLcUOmCImcCkxlbv5TipYikrACThIaQlzSHK5DyakwqTiREzB_eOgfe86WzSubW203tjCpt6tdO-CL95d_1oY61OIzr8UzjfO6D7EVKxcSpsn3RdR-yasDsFeq7tkj7bnDDxfXz3Nb8vFw83d_HJRGoJ5X2pkIdWiYdKalkrTIlbX2lCheasRF5Y12HCua4q0MISImlKrG4Qr1vCWITIDZ-PcdQxvQ-6qchVju057G4aksMQSMokoz-jpH3QZhuhzu0wJLDmUkmYKj5SJIaVoW7WOef_4oRBUG9NqNK2yafVlWokcOtmOHuqVbX4i32ozQEYgrTfqbPz9-5-xn4poie0</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Kong, Cui-Juan</creator><creator>Liang, Han-Ying</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240401</creationdate><title>Quantile difference estimation with censoring indicators missing at random</title><author>Kong, Cui-Juan ; Liang, Han-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a1e04a7d59ecf49cf15bbac47a6fa167e5d2c66ab41a7c337b44ead1285d6f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computer Simulation</topic><topic>Data Analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Distribution functions</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Estimators</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Indicators</topic><topic>Insurance</topic><topic>Likelihood ratio</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Normality</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Quality Control</topic><topic>Quantiles</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Life Sciences</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Cui-Juan</creatorcontrib><creatorcontrib>Liang, Han-Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Lifetime data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Cui-Juan</au><au>Liang, Han-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantile difference estimation with censoring indicators missing at random</atitle><jtitle>Lifetime data analysis</jtitle><stitle>Lifetime Data Anal</stitle><addtitle>Lifetime Data Anal</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><spage>345</spage><epage>382</epage><pages>345-382</pages><issn>1380-7870</issn><issn>1572-9249</issn><eissn>1572-9249</eissn><abstract>In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38238637</pmid><doi>10.1007/s10985-023-09614-7</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7870 |
ispartof | Lifetime data analysis, 2024-04, Vol.30 (2), p.345-382 |
issn | 1380-7870 1572-9249 1572-9249 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929059146 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Asymptotic methods Asymptotic properties Computer Simulation Data Analysis Data Interpretation, Statistical Distribution functions Economics Empirical analysis Estimators Finance Health Sciences Humans Indicators Insurance Likelihood ratio Management Mathematics and Statistics Medicine Normality Operations Research/Decision Theory Probability Quality Control Quantiles Random variables Reliability Safety and Risk Statistics Statistics for Business Statistics for Life Sciences Survival analysis |
title | Quantile difference estimation with censoring indicators missing at random |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantile%20difference%20estimation%20with%20censoring%20indicators%20missing%20at%20random&rft.jtitle=Lifetime%20data%20analysis&rft.au=Kong,%20Cui-Juan&rft.date=2024-04-01&rft.volume=30&rft.issue=2&rft.spage=345&rft.epage=382&rft.pages=345-382&rft.issn=1380-7870&rft.eissn=1572-9249&rft_id=info:doi/10.1007/s10985-023-09614-7&rft_dat=%3Cproquest_cross%3E2972960994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2972960994&rft_id=info:pmid/38238637&rfr_iscdi=true |