Quantile difference estimation with censoring indicators missing at random

In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lifetime data analysis 2024-04, Vol.30 (2), p.345-382
Hauptverfasser: Kong, Cui-Juan, Liang, Han-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 2
container_start_page 345
container_title Lifetime data analysis
container_volume 30
creator Kong, Cui-Juan
Liang, Han-Ying
description In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.
doi_str_mv 10.1007/s10985-023-09614-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929059146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2972960994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a1e04a7d59ecf49cf15bbac47a6fa167e5d2c66ab41a7c337b44ead1285d6f513</originalsourceid><addsrcrecordid>eNp9kEtLxDAYRYMozjj6B1xIwY2bat5pljL4ZEAEXYc0TTVDJxmTFvHfm7GjggtXCeHcL_c7ABwjeI4gFBcJQVmxEmJSQskRLcUOmCImcCkxlbv5TipYikrACThIaQlzSHK5DyakwqTiREzB_eOgfe86WzSubW203tjCpt6tdO-CL95d_1oY61OIzr8UzjfO6D7EVKxcSpsn3RdR-yasDsFeq7tkj7bnDDxfXz3Nb8vFw83d_HJRGoJ5X2pkIdWiYdKalkrTIlbX2lCheasRF5Y12HCua4q0MISImlKrG4Qr1vCWITIDZ-PcdQxvQ-6qchVju057G4aksMQSMokoz-jpH3QZhuhzu0wJLDmUkmYKj5SJIaVoW7WOef_4oRBUG9NqNK2yafVlWokcOtmOHuqVbX4i32ozQEYgrTfqbPz9-5-xn4poie0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2972960994</pqid></control><display><type>article</type><title>Quantile difference estimation with censoring indicators missing at random</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kong, Cui-Juan ; Liang, Han-Ying</creator><creatorcontrib>Kong, Cui-Juan ; Liang, Han-Ying</creatorcontrib><description>In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.</description><identifier>ISSN: 1380-7870</identifier><identifier>ISSN: 1572-9249</identifier><identifier>EISSN: 1572-9249</identifier><identifier>DOI: 10.1007/s10985-023-09614-7</identifier><identifier>PMID: 38238637</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic methods ; Asymptotic properties ; Computer Simulation ; Data Analysis ; Data Interpretation, Statistical ; Distribution functions ; Economics ; Empirical analysis ; Estimators ; Finance ; Health Sciences ; Humans ; Indicators ; Insurance ; Likelihood ratio ; Management ; Mathematics and Statistics ; Medicine ; Normality ; Operations Research/Decision Theory ; Probability ; Quality Control ; Quantiles ; Random variables ; Reliability ; Safety and Risk ; Statistics ; Statistics for Business ; Statistics for Life Sciences ; Survival analysis</subject><ispartof>Lifetime data analysis, 2024-04, Vol.30 (2), p.345-382</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-a1e04a7d59ecf49cf15bbac47a6fa167e5d2c66ab41a7c337b44ead1285d6f513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10985-023-09614-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10985-023-09614-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38238637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Cui-Juan</creatorcontrib><creatorcontrib>Liang, Han-Ying</creatorcontrib><title>Quantile difference estimation with censoring indicators missing at random</title><title>Lifetime data analysis</title><addtitle>Lifetime Data Anal</addtitle><addtitle>Lifetime Data Anal</addtitle><description>In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computer Simulation</subject><subject>Data Analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Distribution functions</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Estimators</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Indicators</subject><subject>Insurance</subject><subject>Likelihood ratio</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Normality</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Quality Control</subject><subject>Quantiles</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Life Sciences</subject><subject>Survival analysis</subject><issn>1380-7870</issn><issn>1572-9249</issn><issn>1572-9249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAYRYMozjj6B1xIwY2bat5pljL4ZEAEXYc0TTVDJxmTFvHfm7GjggtXCeHcL_c7ABwjeI4gFBcJQVmxEmJSQskRLcUOmCImcCkxlbv5TipYikrACThIaQlzSHK5DyakwqTiREzB_eOgfe86WzSubW203tjCpt6tdO-CL95d_1oY61OIzr8UzjfO6D7EVKxcSpsn3RdR-yasDsFeq7tkj7bnDDxfXz3Nb8vFw83d_HJRGoJ5X2pkIdWiYdKalkrTIlbX2lCheasRF5Y12HCua4q0MISImlKrG4Qr1vCWITIDZ-PcdQxvQ-6qchVju057G4aksMQSMokoz-jpH3QZhuhzu0wJLDmUkmYKj5SJIaVoW7WOef_4oRBUG9NqNK2yafVlWokcOtmOHuqVbX4i32ozQEYgrTfqbPz9-5-xn4poie0</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Kong, Cui-Juan</creator><creator>Liang, Han-Ying</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240401</creationdate><title>Quantile difference estimation with censoring indicators missing at random</title><author>Kong, Cui-Juan ; Liang, Han-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a1e04a7d59ecf49cf15bbac47a6fa167e5d2c66ab41a7c337b44ead1285d6f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computer Simulation</topic><topic>Data Analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Distribution functions</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Estimators</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Indicators</topic><topic>Insurance</topic><topic>Likelihood ratio</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Normality</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Quality Control</topic><topic>Quantiles</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Life Sciences</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Cui-Juan</creatorcontrib><creatorcontrib>Liang, Han-Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Lifetime data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Cui-Juan</au><au>Liang, Han-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantile difference estimation with censoring indicators missing at random</atitle><jtitle>Lifetime data analysis</jtitle><stitle>Lifetime Data Anal</stitle><addtitle>Lifetime Data Anal</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><spage>345</spage><epage>382</epage><pages>345-382</pages><issn>1380-7870</issn><issn>1572-9249</issn><eissn>1572-9249</eissn><abstract>In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38238637</pmid><doi>10.1007/s10985-023-09614-7</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7870
ispartof Lifetime data analysis, 2024-04, Vol.30 (2), p.345-382
issn 1380-7870
1572-9249
1572-9249
language eng
recordid cdi_proquest_miscellaneous_2929059146
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Asymptotic methods
Asymptotic properties
Computer Simulation
Data Analysis
Data Interpretation, Statistical
Distribution functions
Economics
Empirical analysis
Estimators
Finance
Health Sciences
Humans
Indicators
Insurance
Likelihood ratio
Management
Mathematics and Statistics
Medicine
Normality
Operations Research/Decision Theory
Probability
Quality Control
Quantiles
Random variables
Reliability
Safety and Risk
Statistics
Statistics for Business
Statistics for Life Sciences
Survival analysis
title Quantile difference estimation with censoring indicators missing at random
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantile%20difference%20estimation%20with%20censoring%20indicators%20missing%20at%20random&rft.jtitle=Lifetime%20data%20analysis&rft.au=Kong,%20Cui-Juan&rft.date=2024-04-01&rft.volume=30&rft.issue=2&rft.spage=345&rft.epage=382&rft.pages=345-382&rft.issn=1380-7870&rft.eissn=1572-9249&rft_id=info:doi/10.1007/s10985-023-09614-7&rft_dat=%3Cproquest_cross%3E2972960994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2972960994&rft_id=info:pmid/38238637&rfr_iscdi=true