Mechanical advantage makes stomatal opening speed a function of evaporative demand

Abstract Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2024-04, Vol.195 (1), p.370-377
Hauptverfasser: Pichaco, Javier, Manandhar, Anju, McAdam, Scott A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 1
container_start_page 370
container_title Plant physiology (Bethesda)
container_volume 195
creator Pichaco, Javier
Manandhar, Anju
McAdam, Scott A M
description Abstract Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage. Stomata of angiosperms open faster in the light at higher vapor pressure deficit.
doi_str_mv 10.1093/plphys/kiae023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929032994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/plphys/kiae023</oup_id><sourcerecordid>2929032994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-40a8d75095eed5ca15cf539eeb177cc5d7a67c98a7684b1f13b53c55b7bd343f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMiKPMKS147iOR1TxJYGQEMzRxbm0oYlt4qRS_z1BKaxMd9K9e8Mj5JKzOWdaLHztN_uw2FaALBZHZMqliKNYJukxmTI27CxN9YSchfDJGOOCJ6dkItKYq1SxKXl7QbMBWxmoKRQ7sB2skTawxUBD5xrohoPzaCu7psEjFhRo2VvTVc5SV1LcgXctdNUOaYEN2OKcnJRQB7w4zBn5uL97Xz1Gz68PT6vb58iIWHdRwiAtlGRaDlJpgEtTSqERc66UMbJQsFRGp6CWaZLzkotcCiNlrvJCJKIUM3I9en3rvnoMXdZUwWBdg0XXhyzWsR4CaJ0M6HxETetCaLHMfFs10O4zzrKfjtnYMTt0HB6uDu4-b7D4w3_DDcDNCLje_yf7BoO6gDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929032994</pqid></control><display><type>article</type><title>Mechanical advantage makes stomatal opening speed a function of evaporative demand</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Pichaco, Javier ; Manandhar, Anju ; McAdam, Scott A M</creator><creatorcontrib>Pichaco, Javier ; Manandhar, Anju ; McAdam, Scott A M</creatorcontrib><description>Abstract Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage. Stomata of angiosperms open faster in the light at higher vapor pressure deficit.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiae023</identifier><identifier>PMID: 38217870</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Biomechanical Phenomena ; Ferns - physiology ; Light ; Magnoliopsida - physiology ; Marsileaceae - physiology ; Plant Epidermis - cytology ; Plant Epidermis - physiology ; Plant Stomata - physiology ; Plant Transpiration - physiology ; Vapor Pressure</subject><ispartof>Plant physiology (Bethesda), 2024-04, Vol.195 (1), p.370-377</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-40a8d75095eed5ca15cf539eeb177cc5d7a67c98a7684b1f13b53c55b7bd343f3</citedby><cites>FETCH-LOGICAL-c329t-40a8d75095eed5ca15cf539eeb177cc5d7a67c98a7684b1f13b53c55b7bd343f3</cites><orcidid>0000-0002-5202-9994 ; 0000-0002-9625-6750 ; 0000-0001-5687-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38217870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pichaco, Javier</creatorcontrib><creatorcontrib>Manandhar, Anju</creatorcontrib><creatorcontrib>McAdam, Scott A M</creatorcontrib><title>Mechanical advantage makes stomatal opening speed a function of evaporative demand</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Abstract Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage. Stomata of angiosperms open faster in the light at higher vapor pressure deficit.</description><subject>Biomechanical Phenomena</subject><subject>Ferns - physiology</subject><subject>Light</subject><subject>Magnoliopsida - physiology</subject><subject>Marsileaceae - physiology</subject><subject>Plant Epidermis - cytology</subject><subject>Plant Epidermis - physiology</subject><subject>Plant Stomata - physiology</subject><subject>Plant Transpiration - physiology</subject><subject>Vapor Pressure</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQQC0EoqWwMiKPMKS147iOR1TxJYGQEMzRxbm0oYlt4qRS_z1BKaxMd9K9e8Mj5JKzOWdaLHztN_uw2FaALBZHZMqliKNYJukxmTI27CxN9YSchfDJGOOCJ6dkItKYq1SxKXl7QbMBWxmoKRQ7sB2skTawxUBD5xrohoPzaCu7psEjFhRo2VvTVc5SV1LcgXctdNUOaYEN2OKcnJRQB7w4zBn5uL97Xz1Gz68PT6vb58iIWHdRwiAtlGRaDlJpgEtTSqERc66UMbJQsFRGp6CWaZLzkotcCiNlrvJCJKIUM3I9en3rvnoMXdZUwWBdg0XXhyzWsR4CaJ0M6HxETetCaLHMfFs10O4zzrKfjtnYMTt0HB6uDu4-b7D4w3_DDcDNCLje_yf7BoO6gDU</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Pichaco, Javier</creator><creator>Manandhar, Anju</creator><creator>McAdam, Scott A M</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5202-9994</orcidid><orcidid>https://orcid.org/0000-0002-9625-6750</orcidid><orcidid>https://orcid.org/0000-0001-5687-2957</orcidid></search><sort><creationdate>20240430</creationdate><title>Mechanical advantage makes stomatal opening speed a function of evaporative demand</title><author>Pichaco, Javier ; Manandhar, Anju ; McAdam, Scott A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-40a8d75095eed5ca15cf539eeb177cc5d7a67c98a7684b1f13b53c55b7bd343f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomechanical Phenomena</topic><topic>Ferns - physiology</topic><topic>Light</topic><topic>Magnoliopsida - physiology</topic><topic>Marsileaceae - physiology</topic><topic>Plant Epidermis - cytology</topic><topic>Plant Epidermis - physiology</topic><topic>Plant Stomata - physiology</topic><topic>Plant Transpiration - physiology</topic><topic>Vapor Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pichaco, Javier</creatorcontrib><creatorcontrib>Manandhar, Anju</creatorcontrib><creatorcontrib>McAdam, Scott A M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pichaco, Javier</au><au>Manandhar, Anju</au><au>McAdam, Scott A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical advantage makes stomatal opening speed a function of evaporative demand</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2024-04-30</date><risdate>2024</risdate><volume>195</volume><issue>1</issue><spage>370</spage><epage>377</epage><pages>370-377</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Abstract Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage. Stomata of angiosperms open faster in the light at higher vapor pressure deficit.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>38217870</pmid><doi>10.1093/plphys/kiae023</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5202-9994</orcidid><orcidid>https://orcid.org/0000-0002-9625-6750</orcidid><orcidid>https://orcid.org/0000-0001-5687-2957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2024-04, Vol.195 (1), p.370-377
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_2929032994
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Biomechanical Phenomena
Ferns - physiology
Light
Magnoliopsida - physiology
Marsileaceae - physiology
Plant Epidermis - cytology
Plant Epidermis - physiology
Plant Stomata - physiology
Plant Transpiration - physiology
Vapor Pressure
title Mechanical advantage makes stomatal opening speed a function of evaporative demand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20advantage%20makes%20stomatal%20opening%20speed%20a%20function%20of%20evaporative%20demand&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Pichaco,%20Javier&rft.date=2024-04-30&rft.volume=195&rft.issue=1&rft.spage=370&rft.epage=377&rft.pages=370-377&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiae023&rft_dat=%3Cproquest_cross%3E2929032994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929032994&rft_id=info:pmid/38217870&rft_oup_id=10.1093/plphys/kiae023&rfr_iscdi=true