Mechanical advantage makes stomatal opening speed a function of evaporative demand
Abstract Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we hav...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2024-04, Vol.195 (1), p.370-377 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 1 |
container_start_page | 370 |
container_title | Plant physiology (Bethesda) |
container_volume | 195 |
creator | Pichaco, Javier Manandhar, Anju McAdam, Scott A M |
description | Abstract
Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.
Stomata of angiosperms open faster in the light at higher vapor pressure deficit. |
doi_str_mv | 10.1093/plphys/kiae023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929032994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/plphys/kiae023</oup_id><sourcerecordid>2929032994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-40a8d75095eed5ca15cf539eeb177cc5d7a67c98a7684b1f13b53c55b7bd343f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMiKPMKS147iOR1TxJYGQEMzRxbm0oYlt4qRS_z1BKaxMd9K9e8Mj5JKzOWdaLHztN_uw2FaALBZHZMqliKNYJukxmTI27CxN9YSchfDJGOOCJ6dkItKYq1SxKXl7QbMBWxmoKRQ7sB2skTawxUBD5xrohoPzaCu7psEjFhRo2VvTVc5SV1LcgXctdNUOaYEN2OKcnJRQB7w4zBn5uL97Xz1Gz68PT6vb58iIWHdRwiAtlGRaDlJpgEtTSqERc66UMbJQsFRGp6CWaZLzkotcCiNlrvJCJKIUM3I9en3rvnoMXdZUwWBdg0XXhyzWsR4CaJ0M6HxETetCaLHMfFs10O4zzrKfjtnYMTt0HB6uDu4-b7D4w3_DDcDNCLje_yf7BoO6gDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929032994</pqid></control><display><type>article</type><title>Mechanical advantage makes stomatal opening speed a function of evaporative demand</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Pichaco, Javier ; Manandhar, Anju ; McAdam, Scott A M</creator><creatorcontrib>Pichaco, Javier ; Manandhar, Anju ; McAdam, Scott A M</creatorcontrib><description>Abstract
Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.
Stomata of angiosperms open faster in the light at higher vapor pressure deficit.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiae023</identifier><identifier>PMID: 38217870</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Biomechanical Phenomena ; Ferns - physiology ; Light ; Magnoliopsida - physiology ; Marsileaceae - physiology ; Plant Epidermis - cytology ; Plant Epidermis - physiology ; Plant Stomata - physiology ; Plant Transpiration - physiology ; Vapor Pressure</subject><ispartof>Plant physiology (Bethesda), 2024-04, Vol.195 (1), p.370-377</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-40a8d75095eed5ca15cf539eeb177cc5d7a67c98a7684b1f13b53c55b7bd343f3</citedby><cites>FETCH-LOGICAL-c329t-40a8d75095eed5ca15cf539eeb177cc5d7a67c98a7684b1f13b53c55b7bd343f3</cites><orcidid>0000-0002-5202-9994 ; 0000-0002-9625-6750 ; 0000-0001-5687-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38217870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pichaco, Javier</creatorcontrib><creatorcontrib>Manandhar, Anju</creatorcontrib><creatorcontrib>McAdam, Scott A M</creatorcontrib><title>Mechanical advantage makes stomatal opening speed a function of evaporative demand</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Abstract
Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.
Stomata of angiosperms open faster in the light at higher vapor pressure deficit.</description><subject>Biomechanical Phenomena</subject><subject>Ferns - physiology</subject><subject>Light</subject><subject>Magnoliopsida - physiology</subject><subject>Marsileaceae - physiology</subject><subject>Plant Epidermis - cytology</subject><subject>Plant Epidermis - physiology</subject><subject>Plant Stomata - physiology</subject><subject>Plant Transpiration - physiology</subject><subject>Vapor Pressure</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQQC0EoqWwMiKPMKS147iOR1TxJYGQEMzRxbm0oYlt4qRS_z1BKaxMd9K9e8Mj5JKzOWdaLHztN_uw2FaALBZHZMqliKNYJukxmTI27CxN9YSchfDJGOOCJ6dkItKYq1SxKXl7QbMBWxmoKRQ7sB2skTawxUBD5xrohoPzaCu7psEjFhRo2VvTVc5SV1LcgXctdNUOaYEN2OKcnJRQB7w4zBn5uL97Xz1Gz68PT6vb58iIWHdRwiAtlGRaDlJpgEtTSqERc66UMbJQsFRGp6CWaZLzkotcCiNlrvJCJKIUM3I9en3rvnoMXdZUwWBdg0XXhyzWsR4CaJ0M6HxETetCaLHMfFs10O4zzrKfjtnYMTt0HB6uDu4-b7D4w3_DDcDNCLje_yf7BoO6gDU</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Pichaco, Javier</creator><creator>Manandhar, Anju</creator><creator>McAdam, Scott A M</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5202-9994</orcidid><orcidid>https://orcid.org/0000-0002-9625-6750</orcidid><orcidid>https://orcid.org/0000-0001-5687-2957</orcidid></search><sort><creationdate>20240430</creationdate><title>Mechanical advantage makes stomatal opening speed a function of evaporative demand</title><author>Pichaco, Javier ; Manandhar, Anju ; McAdam, Scott A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-40a8d75095eed5ca15cf539eeb177cc5d7a67c98a7684b1f13b53c55b7bd343f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomechanical Phenomena</topic><topic>Ferns - physiology</topic><topic>Light</topic><topic>Magnoliopsida - physiology</topic><topic>Marsileaceae - physiology</topic><topic>Plant Epidermis - cytology</topic><topic>Plant Epidermis - physiology</topic><topic>Plant Stomata - physiology</topic><topic>Plant Transpiration - physiology</topic><topic>Vapor Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pichaco, Javier</creatorcontrib><creatorcontrib>Manandhar, Anju</creatorcontrib><creatorcontrib>McAdam, Scott A M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pichaco, Javier</au><au>Manandhar, Anju</au><au>McAdam, Scott A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical advantage makes stomatal opening speed a function of evaporative demand</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2024-04-30</date><risdate>2024</risdate><volume>195</volume><issue>1</issue><spage>370</spage><epage>377</epage><pages>370-377</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Abstract
Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.
Stomata of angiosperms open faster in the light at higher vapor pressure deficit.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>38217870</pmid><doi>10.1093/plphys/kiae023</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5202-9994</orcidid><orcidid>https://orcid.org/0000-0002-9625-6750</orcidid><orcidid>https://orcid.org/0000-0001-5687-2957</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2024-04, Vol.195 (1), p.370-377 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929032994 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Biomechanical Phenomena Ferns - physiology Light Magnoliopsida - physiology Marsileaceae - physiology Plant Epidermis - cytology Plant Epidermis - physiology Plant Stomata - physiology Plant Transpiration - physiology Vapor Pressure |
title | Mechanical advantage makes stomatal opening speed a function of evaporative demand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20advantage%20makes%20stomatal%20opening%20speed%20a%20function%20of%20evaporative%20demand&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Pichaco,%20Javier&rft.date=2024-04-30&rft.volume=195&rft.issue=1&rft.spage=370&rft.epage=377&rft.pages=370-377&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiae023&rft_dat=%3Cproquest_cross%3E2929032994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929032994&rft_id=info:pmid/38217870&rft_oup_id=10.1093/plphys/kiae023&rfr_iscdi=true |