An actively stabilized, miniaturized epi‐fluorescence widefield microscope for real‐time observation in vivo
Recent developments in real‐time, in vivo micro‐imaging have allowed for the visualization of tissue pathological changes, facilitating rapid diagnosis. However, miniaturization, magnification, the field of view, and in vivo image stabilization remain challenging factors to reconcile. A key issue fo...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2024-05, Vol.87 (5), p.1044-1051 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1051 |
---|---|
container_issue | 5 |
container_start_page | 1044 |
container_title | Microscopy research and technique |
container_volume | 87 |
creator | Nuerbahati, Ayiben Liao, Jiasheng Lyu, Jing Abduwali, Serk Chiang, Li‐Yang |
description | Recent developments in real‐time, in vivo micro‐imaging have allowed for the visualization of tissue pathological changes, facilitating rapid diagnosis. However, miniaturization, magnification, the field of view, and in vivo image stabilization remain challenging factors to reconcile. A key issue for this technology is ensuring it is user friendly for surgeons, enabling them to use the device manually and obtain instantaneous information necessary for surgical decision‐making. This descriptive study introduces a handheld, actively stabilized, miniaturized epi‐fluorescence widefield microscope (MEW‐M) for real‐time observation in vivo with high resolution. The methodology of MEW‐M system includes high resolution microscopy miniaturization technology, thousandfold shaking suppression (actively stabilized), ultra‐photosensitivity, and tailored image signal processing cell image capture and processing technology, which support for the excellent real‐time imaging performance of MEW‐M system in brain, mammary, liver, lung, and kidney tissue imaging of rats in vivo. With a single‐objective and high‐frame‐rate imaging, the MEW‐M system facilitates roving image acquisition, enabling contiguous analysis of large tissue areas.
Research Highlights
A handheld, actively stabilized MEW‐M system was introduced.
Excellent real‐time, in vivo imaging with high resolution and active stabilization in brain, mammary, liver, lung, and kidney tissue of rats.
A newly designed anti‐shaking MEW‐M system, and the real‐time imaging of organ tissue in living rats versus H&E stained histological examination, including brain, mammary, liver, lung, and kidney. |
doi_str_mv | 10.1002/jemt.24493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929032812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020841164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3163-4c332c41b2dfb35521fab2da3c8b3870c5f2501b159e3c523616eb2e162a5a853</originalsourceid><addsrcrecordid>eNp90c1q3DAQB3BRWpqvXvoARdBLCHGqkSyvfVxCPknpJYHehCyPQYtsuZK9YXPKI-QZ8ySRu0kOPfSkkfjxZ0ZDyFdgJ8AY_7HCbjzheV6JD2QXWLXI0mv1ca5llVXAfu-QvRhXjAFIyD-THVFyWAjBdsmw7Kk2o12j29A46to6-4DNMe1sb_U4hflGcbDPj0-tm3zAaLA3SO9tg61F1yRpgo_GD0hbH2hA7RIebYfU1xHDWo_W99T2dG3X_oB8arWL-OX13Cd352e3p5fZza-Lq9PlTWYEFCLLjRDc5FDzpq2FlBxanWotTFmLcsGMbLlkUIOsUBjJRQEF1hyh4FrqUop9crjNHYL_M2EcVWdT687pHv0UFa94xQQvgSf6_R-68lPoU3dKMM7KHKDIkzraqnnaGLBVQ7CdDhsFTM17UPMe1N89JPztNXKqO2ze6dvHJwBbcG8dbv4Tpa7Pft5uQ18AxYWVwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3020841164</pqid></control><display><type>article</type><title>An actively stabilized, miniaturized epi‐fluorescence widefield microscope for real‐time observation in vivo</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Nuerbahati, Ayiben ; Liao, Jiasheng ; Lyu, Jing ; Abduwali, Serk ; Chiang, Li‐Yang</creator><creatorcontrib>Nuerbahati, Ayiben ; Liao, Jiasheng ; Lyu, Jing ; Abduwali, Serk ; Chiang, Li‐Yang</creatorcontrib><description>Recent developments in real‐time, in vivo micro‐imaging have allowed for the visualization of tissue pathological changes, facilitating rapid diagnosis. However, miniaturization, magnification, the field of view, and in vivo image stabilization remain challenging factors to reconcile. A key issue for this technology is ensuring it is user friendly for surgeons, enabling them to use the device manually and obtain instantaneous information necessary for surgical decision‐making. This descriptive study introduces a handheld, actively stabilized, miniaturized epi‐fluorescence widefield microscope (MEW‐M) for real‐time observation in vivo with high resolution. The methodology of MEW‐M system includes high resolution microscopy miniaturization technology, thousandfold shaking suppression (actively stabilized), ultra‐photosensitivity, and tailored image signal processing cell image capture and processing technology, which support for the excellent real‐time imaging performance of MEW‐M system in brain, mammary, liver, lung, and kidney tissue imaging of rats in vivo. With a single‐objective and high‐frame‐rate imaging, the MEW‐M system facilitates roving image acquisition, enabling contiguous analysis of large tissue areas.
Research Highlights
A handheld, actively stabilized MEW‐M system was introduced.
Excellent real‐time, in vivo imaging with high resolution and active stabilization in brain, mammary, liver, lung, and kidney tissue of rats.
A newly designed anti‐shaking MEW‐M system, and the real‐time imaging of organ tissue in living rats versus H&E stained histological examination, including brain, mammary, liver, lung, and kidney.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.24493</identifier><identifier>PMID: 38217330</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>actively stabilized ; Animal tissues ; Animals ; Brain ; Decision making ; epi‐fluorescence microscope ; Fluorescence ; handheld ; High resolution ; Image acquisition ; Image processing ; Image resolution ; Image stabilizers ; imaging ; in vivo ; In vivo methods and tests ; Kidneys ; Liver ; Lungs ; Medical imaging ; Microscopy, Fluorescence - methods ; Miniaturization ; Neuroimaging ; Photosensitivity ; Rats ; real‐time observation ; Shaking ; Signal processing ; Stabilization ; widefield</subject><ispartof>Microscopy research and technique, 2024-05, Vol.87 (5), p.1044-1051</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3163-4c332c41b2dfb35521fab2da3c8b3870c5f2501b159e3c523616eb2e162a5a853</cites><orcidid>0009-0000-7872-682X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.24493$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.24493$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38217330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nuerbahati, Ayiben</creatorcontrib><creatorcontrib>Liao, Jiasheng</creatorcontrib><creatorcontrib>Lyu, Jing</creatorcontrib><creatorcontrib>Abduwali, Serk</creatorcontrib><creatorcontrib>Chiang, Li‐Yang</creatorcontrib><title>An actively stabilized, miniaturized epi‐fluorescence widefield microscope for real‐time observation in vivo</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>Recent developments in real‐time, in vivo micro‐imaging have allowed for the visualization of tissue pathological changes, facilitating rapid diagnosis. However, miniaturization, magnification, the field of view, and in vivo image stabilization remain challenging factors to reconcile. A key issue for this technology is ensuring it is user friendly for surgeons, enabling them to use the device manually and obtain instantaneous information necessary for surgical decision‐making. This descriptive study introduces a handheld, actively stabilized, miniaturized epi‐fluorescence widefield microscope (MEW‐M) for real‐time observation in vivo with high resolution. The methodology of MEW‐M system includes high resolution microscopy miniaturization technology, thousandfold shaking suppression (actively stabilized), ultra‐photosensitivity, and tailored image signal processing cell image capture and processing technology, which support for the excellent real‐time imaging performance of MEW‐M system in brain, mammary, liver, lung, and kidney tissue imaging of rats in vivo. With a single‐objective and high‐frame‐rate imaging, the MEW‐M system facilitates roving image acquisition, enabling contiguous analysis of large tissue areas.
Research Highlights
A handheld, actively stabilized MEW‐M system was introduced.
Excellent real‐time, in vivo imaging with high resolution and active stabilization in brain, mammary, liver, lung, and kidney tissue of rats.
A newly designed anti‐shaking MEW‐M system, and the real‐time imaging of organ tissue in living rats versus H&E stained histological examination, including brain, mammary, liver, lung, and kidney.</description><subject>actively stabilized</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Brain</subject><subject>Decision making</subject><subject>epi‐fluorescence microscope</subject><subject>Fluorescence</subject><subject>handheld</subject><subject>High resolution</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image stabilizers</subject><subject>imaging</subject><subject>in vivo</subject><subject>In vivo methods and tests</subject><subject>Kidneys</subject><subject>Liver</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Miniaturization</subject><subject>Neuroimaging</subject><subject>Photosensitivity</subject><subject>Rats</subject><subject>real‐time observation</subject><subject>Shaking</subject><subject>Signal processing</subject><subject>Stabilization</subject><subject>widefield</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c1q3DAQB3BRWpqvXvoARdBLCHGqkSyvfVxCPknpJYHehCyPQYtsuZK9YXPKI-QZ8ySRu0kOPfSkkfjxZ0ZDyFdgJ8AY_7HCbjzheV6JD2QXWLXI0mv1ca5llVXAfu-QvRhXjAFIyD-THVFyWAjBdsmw7Kk2o12j29A46to6-4DNMe1sb_U4hflGcbDPj0-tm3zAaLA3SO9tg61F1yRpgo_GD0hbH2hA7RIebYfU1xHDWo_W99T2dG3X_oB8arWL-OX13Cd352e3p5fZza-Lq9PlTWYEFCLLjRDc5FDzpq2FlBxanWotTFmLcsGMbLlkUIOsUBjJRQEF1hyh4FrqUop9crjNHYL_M2EcVWdT687pHv0UFa94xQQvgSf6_R-68lPoU3dKMM7KHKDIkzraqnnaGLBVQ7CdDhsFTM17UPMe1N89JPztNXKqO2ze6dvHJwBbcG8dbv4Tpa7Pft5uQ18AxYWVwQ</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Nuerbahati, Ayiben</creator><creator>Liao, Jiasheng</creator><creator>Lyu, Jing</creator><creator>Abduwali, Serk</creator><creator>Chiang, Li‐Yang</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-7872-682X</orcidid></search><sort><creationdate>202405</creationdate><title>An actively stabilized, miniaturized epi‐fluorescence widefield microscope for real‐time observation in vivo</title><author>Nuerbahati, Ayiben ; Liao, Jiasheng ; Lyu, Jing ; Abduwali, Serk ; Chiang, Li‐Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3163-4c332c41b2dfb35521fab2da3c8b3870c5f2501b159e3c523616eb2e162a5a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>actively stabilized</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Brain</topic><topic>Decision making</topic><topic>epi‐fluorescence microscope</topic><topic>Fluorescence</topic><topic>handheld</topic><topic>High resolution</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image stabilizers</topic><topic>imaging</topic><topic>in vivo</topic><topic>In vivo methods and tests</topic><topic>Kidneys</topic><topic>Liver</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Miniaturization</topic><topic>Neuroimaging</topic><topic>Photosensitivity</topic><topic>Rats</topic><topic>real‐time observation</topic><topic>Shaking</topic><topic>Signal processing</topic><topic>Stabilization</topic><topic>widefield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nuerbahati, Ayiben</creatorcontrib><creatorcontrib>Liao, Jiasheng</creatorcontrib><creatorcontrib>Lyu, Jing</creatorcontrib><creatorcontrib>Abduwali, Serk</creatorcontrib><creatorcontrib>Chiang, Li‐Yang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nuerbahati, Ayiben</au><au>Liao, Jiasheng</au><au>Lyu, Jing</au><au>Abduwali, Serk</au><au>Chiang, Li‐Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An actively stabilized, miniaturized epi‐fluorescence widefield microscope for real‐time observation in vivo</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2024-05</date><risdate>2024</risdate><volume>87</volume><issue>5</issue><spage>1044</spage><epage>1051</epage><pages>1044-1051</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Recent developments in real‐time, in vivo micro‐imaging have allowed for the visualization of tissue pathological changes, facilitating rapid diagnosis. However, miniaturization, magnification, the field of view, and in vivo image stabilization remain challenging factors to reconcile. A key issue for this technology is ensuring it is user friendly for surgeons, enabling them to use the device manually and obtain instantaneous information necessary for surgical decision‐making. This descriptive study introduces a handheld, actively stabilized, miniaturized epi‐fluorescence widefield microscope (MEW‐M) for real‐time observation in vivo with high resolution. The methodology of MEW‐M system includes high resolution microscopy miniaturization technology, thousandfold shaking suppression (actively stabilized), ultra‐photosensitivity, and tailored image signal processing cell image capture and processing technology, which support for the excellent real‐time imaging performance of MEW‐M system in brain, mammary, liver, lung, and kidney tissue imaging of rats in vivo. With a single‐objective and high‐frame‐rate imaging, the MEW‐M system facilitates roving image acquisition, enabling contiguous analysis of large tissue areas.
Research Highlights
A handheld, actively stabilized MEW‐M system was introduced.
Excellent real‐time, in vivo imaging with high resolution and active stabilization in brain, mammary, liver, lung, and kidney tissue of rats.
A newly designed anti‐shaking MEW‐M system, and the real‐time imaging of organ tissue in living rats versus H&E stained histological examination, including brain, mammary, liver, lung, and kidney.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38217330</pmid><doi>10.1002/jemt.24493</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0000-7872-682X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2024-05, Vol.87 (5), p.1044-1051 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929032812 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | actively stabilized Animal tissues Animals Brain Decision making epi‐fluorescence microscope Fluorescence handheld High resolution Image acquisition Image processing Image resolution Image stabilizers imaging in vivo In vivo methods and tests Kidneys Liver Lungs Medical imaging Microscopy, Fluorescence - methods Miniaturization Neuroimaging Photosensitivity Rats real‐time observation Shaking Signal processing Stabilization widefield |
title | An actively stabilized, miniaturized epi‐fluorescence widefield microscope for real‐time observation in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20actively%20stabilized,%20miniaturized%20epi%E2%80%90fluorescence%20widefield%20microscope%20for%20real%E2%80%90time%20observation%20in%20vivo&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Nuerbahati,%20Ayiben&rft.date=2024-05&rft.volume=87&rft.issue=5&rft.spage=1044&rft.epage=1051&rft.pages=1044-1051&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.24493&rft_dat=%3Cproquest_cross%3E3020841164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3020841164&rft_id=info:pmid/38217330&rfr_iscdi=true |