2Memristor‐1Capacitor Integrated Temporal Kernel for High‐Dimensional Data Mapping
Compact but precise feature‐extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high‐dimensional space using the time dynamics of a material system, such as a volatile m...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (25), p.e2306585-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 25 |
container_start_page | e2306585 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Shim, Sung Keun Jang, Yoon Ho Han, Janguk Jeon, Jeong Woo Shin, Dong Hoon Kim, Yeong Rok Han, Joon‐Kyu Woo, Kyung Seok Lee, Soo Hyung Cheong, Sunwoo Kim, Jaehyun Seo, Haengha Shin, Jonghoon Hwang, Cheol Seong |
description | Compact but precise feature‐extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high‐dimensional space using the time dynamics of a material system, such as a volatile memristor. However, conventional physical RC systems have limited dynamics for the given material properties, restricting the methods to increase their dimensionality. This study proposes an integrated temporal kernel composed of a 2‐memristor and 1‐capacitor (2M1C) using a W/HfO2/TiN memristor and TiN/ZrO2/Al2O3/ZrO2/TiN capacitor to achieve higher dimensionality and tunable dynamics. The kernel elements are carefully designed and fabricated into an integrated array, of which performances are evaluated under diverse conditions. By optimizing the time dynamics of the 2M1C kernel, each memristor simultaneously extracts complementary information from input signals. The MNIST benchmark digit classification task achieves a high accuracy of 94.3% with a (196×10) single‐layer network. Analog input mapping ability is tested with a Mackey‐Glass time series prediction, and the system records a normalized root mean square error of 0.04 with a 20×1 readout network, the smallest readout network ever used for Mackey‐Glass prediction in RC. These performances demonstrate its high potential for efficient temporal data analysis.
An integrated temporal kernel using two memristors and one capacitor is fabricated. This kernel extracts complementary features from the input, ultimately processing MNIST images at 8‐bit to achieve an accuracy of 94.3%. Excellent prediction performance for the Mackey‐Glass time series is verified with NRMSE of 0.04 in minimal network size (20 × 1). |
doi_str_mv | 10.1002/smll.202306585 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929026830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929026830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3285-c98c74cd4d17a7d167045be90246205b283322b99b8cdfdb4c2c0b3145d384543</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EglJYGVEkFpYW-9pJ7BG1PCpSMfBYLcdxi6u8sBMhNj6Bb-RLMCoUiYXJtu65R9ZB6IjgMcEYznxVlmPAQHES83gLDUhC6CjhILY3d4L30L73K4wpAZbuoj3KgQBwMkCPMDeVs75r3MfbO5moVmkbHtGs7szSqc4U0b2p2sapMroxrjZltAjja7t8CgtTW5na26YO06nqVDRXbWvr5QHaWajSm8Pvc4geLi_uJ9ej7PZqNjnPRpoCj0dacJ0yXbCCpCotSJJiFudGYGAJ4DgHTilALkTOdbEocqZB45wSFheUs5jRITpde1vXPPfGd7KyXpuyVLVpei9BQJAlnOKAnvxBV03vwse9DPFETEXwBWq8prRrvHdmIVtnK-VeJcHyq7j8Ki43xcPC8be2zytTbPCfxAEQa-DFlub1H528m2fZr_wTTzeNqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069539543</pqid></control><display><type>article</type><title>2Memristor‐1Capacitor Integrated Temporal Kernel for High‐Dimensional Data Mapping</title><source>Wiley-Blackwell Journals</source><creator>Shim, Sung Keun ; Jang, Yoon Ho ; Han, Janguk ; Jeon, Jeong Woo ; Shin, Dong Hoon ; Kim, Yeong Rok ; Han, Joon‐Kyu ; Woo, Kyung Seok ; Lee, Soo Hyung ; Cheong, Sunwoo ; Kim, Jaehyun ; Seo, Haengha ; Shin, Jonghoon ; Hwang, Cheol Seong</creator><creatorcontrib>Shim, Sung Keun ; Jang, Yoon Ho ; Han, Janguk ; Jeon, Jeong Woo ; Shin, Dong Hoon ; Kim, Yeong Rok ; Han, Joon‐Kyu ; Woo, Kyung Seok ; Lee, Soo Hyung ; Cheong, Sunwoo ; Kim, Jaehyun ; Seo, Haengha ; Shin, Jonghoon ; Hwang, Cheol Seong</creatorcontrib><description>Compact but precise feature‐extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high‐dimensional space using the time dynamics of a material system, such as a volatile memristor. However, conventional physical RC systems have limited dynamics for the given material properties, restricting the methods to increase their dimensionality. This study proposes an integrated temporal kernel composed of a 2‐memristor and 1‐capacitor (2M1C) using a W/HfO2/TiN memristor and TiN/ZrO2/Al2O3/ZrO2/TiN capacitor to achieve higher dimensionality and tunable dynamics. The kernel elements are carefully designed and fabricated into an integrated array, of which performances are evaluated under diverse conditions. By optimizing the time dynamics of the 2M1C kernel, each memristor simultaneously extracts complementary information from input signals. The MNIST benchmark digit classification task achieves a high accuracy of 94.3% with a (196×10) single‐layer network. Analog input mapping ability is tested with a Mackey‐Glass time series prediction, and the system records a normalized root mean square error of 0.04 with a 20×1 readout network, the smallest readout network ever used for Mackey‐Glass prediction in RC. These performances demonstrate its high potential for efficient temporal data analysis.
An integrated temporal kernel using two memristors and one capacitor is fabricated. This kernel extracts complementary features from the input, ultimately processing MNIST images at 8‐bit to achieve an accuracy of 94.3%. Excellent prediction performance for the Mackey‐Glass time series is verified with NRMSE of 0.04 in minimal network size (20 × 1).</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202306585</identifier><identifier>PMID: 38212281</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; analog memristor ; Capacitors ; Data analysis ; dual feature mapping ; Dynamics ; Mapping ; Material properties ; Memristors ; neuromorphic hardware ; Task complexity ; temporal data processing ; time series prediction ; Titanium nitride ; Zirconium dioxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (25), p.e2306585-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3285-c98c74cd4d17a7d167045be90246205b283322b99b8cdfdb4c2c0b3145d384543</cites><orcidid>0009-0004-2071-2731 ; 0000-0002-6254-9758 ; 0009-0008-3718-1833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202306585$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202306585$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38212281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shim, Sung Keun</creatorcontrib><creatorcontrib>Jang, Yoon Ho</creatorcontrib><creatorcontrib>Han, Janguk</creatorcontrib><creatorcontrib>Jeon, Jeong Woo</creatorcontrib><creatorcontrib>Shin, Dong Hoon</creatorcontrib><creatorcontrib>Kim, Yeong Rok</creatorcontrib><creatorcontrib>Han, Joon‐Kyu</creatorcontrib><creatorcontrib>Woo, Kyung Seok</creatorcontrib><creatorcontrib>Lee, Soo Hyung</creatorcontrib><creatorcontrib>Cheong, Sunwoo</creatorcontrib><creatorcontrib>Kim, Jaehyun</creatorcontrib><creatorcontrib>Seo, Haengha</creatorcontrib><creatorcontrib>Shin, Jonghoon</creatorcontrib><creatorcontrib>Hwang, Cheol Seong</creatorcontrib><title>2Memristor‐1Capacitor Integrated Temporal Kernel for High‐Dimensional Data Mapping</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Compact but precise feature‐extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high‐dimensional space using the time dynamics of a material system, such as a volatile memristor. However, conventional physical RC systems have limited dynamics for the given material properties, restricting the methods to increase their dimensionality. This study proposes an integrated temporal kernel composed of a 2‐memristor and 1‐capacitor (2M1C) using a W/HfO2/TiN memristor and TiN/ZrO2/Al2O3/ZrO2/TiN capacitor to achieve higher dimensionality and tunable dynamics. The kernel elements are carefully designed and fabricated into an integrated array, of which performances are evaluated under diverse conditions. By optimizing the time dynamics of the 2M1C kernel, each memristor simultaneously extracts complementary information from input signals. The MNIST benchmark digit classification task achieves a high accuracy of 94.3% with a (196×10) single‐layer network. Analog input mapping ability is tested with a Mackey‐Glass time series prediction, and the system records a normalized root mean square error of 0.04 with a 20×1 readout network, the smallest readout network ever used for Mackey‐Glass prediction in RC. These performances demonstrate its high potential for efficient temporal data analysis.
An integrated temporal kernel using two memristors and one capacitor is fabricated. This kernel extracts complementary features from the input, ultimately processing MNIST images at 8‐bit to achieve an accuracy of 94.3%. Excellent prediction performance for the Mackey‐Glass time series is verified with NRMSE of 0.04 in minimal network size (20 × 1).</description><subject>Aluminum oxide</subject><subject>analog memristor</subject><subject>Capacitors</subject><subject>Data analysis</subject><subject>dual feature mapping</subject><subject>Dynamics</subject><subject>Mapping</subject><subject>Material properties</subject><subject>Memristors</subject><subject>neuromorphic hardware</subject><subject>Task complexity</subject><subject>temporal data processing</subject><subject>time series prediction</subject><subject>Titanium nitride</subject><subject>Zirconium dioxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EglJYGVEkFpYW-9pJ7BG1PCpSMfBYLcdxi6u8sBMhNj6Bb-RLMCoUiYXJtu65R9ZB6IjgMcEYznxVlmPAQHES83gLDUhC6CjhILY3d4L30L73K4wpAZbuoj3KgQBwMkCPMDeVs75r3MfbO5moVmkbHtGs7szSqc4U0b2p2sapMroxrjZltAjja7t8CgtTW5na26YO06nqVDRXbWvr5QHaWajSm8Pvc4geLi_uJ9ej7PZqNjnPRpoCj0dacJ0yXbCCpCotSJJiFudGYGAJ4DgHTilALkTOdbEocqZB45wSFheUs5jRITpde1vXPPfGd7KyXpuyVLVpei9BQJAlnOKAnvxBV03vwse9DPFETEXwBWq8prRrvHdmIVtnK-VeJcHyq7j8Ki43xcPC8be2zytTbPCfxAEQa-DFlub1H528m2fZr_wTTzeNqA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Shim, Sung Keun</creator><creator>Jang, Yoon Ho</creator><creator>Han, Janguk</creator><creator>Jeon, Jeong Woo</creator><creator>Shin, Dong Hoon</creator><creator>Kim, Yeong Rok</creator><creator>Han, Joon‐Kyu</creator><creator>Woo, Kyung Seok</creator><creator>Lee, Soo Hyung</creator><creator>Cheong, Sunwoo</creator><creator>Kim, Jaehyun</creator><creator>Seo, Haengha</creator><creator>Shin, Jonghoon</creator><creator>Hwang, Cheol Seong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-2071-2731</orcidid><orcidid>https://orcid.org/0000-0002-6254-9758</orcidid><orcidid>https://orcid.org/0009-0008-3718-1833</orcidid></search><sort><creationdate>20240601</creationdate><title>2Memristor‐1Capacitor Integrated Temporal Kernel for High‐Dimensional Data Mapping</title><author>Shim, Sung Keun ; Jang, Yoon Ho ; Han, Janguk ; Jeon, Jeong Woo ; Shin, Dong Hoon ; Kim, Yeong Rok ; Han, Joon‐Kyu ; Woo, Kyung Seok ; Lee, Soo Hyung ; Cheong, Sunwoo ; Kim, Jaehyun ; Seo, Haengha ; Shin, Jonghoon ; Hwang, Cheol Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3285-c98c74cd4d17a7d167045be90246205b283322b99b8cdfdb4c2c0b3145d384543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>analog memristor</topic><topic>Capacitors</topic><topic>Data analysis</topic><topic>dual feature mapping</topic><topic>Dynamics</topic><topic>Mapping</topic><topic>Material properties</topic><topic>Memristors</topic><topic>neuromorphic hardware</topic><topic>Task complexity</topic><topic>temporal data processing</topic><topic>time series prediction</topic><topic>Titanium nitride</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shim, Sung Keun</creatorcontrib><creatorcontrib>Jang, Yoon Ho</creatorcontrib><creatorcontrib>Han, Janguk</creatorcontrib><creatorcontrib>Jeon, Jeong Woo</creatorcontrib><creatorcontrib>Shin, Dong Hoon</creatorcontrib><creatorcontrib>Kim, Yeong Rok</creatorcontrib><creatorcontrib>Han, Joon‐Kyu</creatorcontrib><creatorcontrib>Woo, Kyung Seok</creatorcontrib><creatorcontrib>Lee, Soo Hyung</creatorcontrib><creatorcontrib>Cheong, Sunwoo</creatorcontrib><creatorcontrib>Kim, Jaehyun</creatorcontrib><creatorcontrib>Seo, Haengha</creatorcontrib><creatorcontrib>Shin, Jonghoon</creatorcontrib><creatorcontrib>Hwang, Cheol Seong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shim, Sung Keun</au><au>Jang, Yoon Ho</au><au>Han, Janguk</au><au>Jeon, Jeong Woo</au><au>Shin, Dong Hoon</au><au>Kim, Yeong Rok</au><au>Han, Joon‐Kyu</au><au>Woo, Kyung Seok</au><au>Lee, Soo Hyung</au><au>Cheong, Sunwoo</au><au>Kim, Jaehyun</au><au>Seo, Haengha</au><au>Shin, Jonghoon</au><au>Hwang, Cheol Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2Memristor‐1Capacitor Integrated Temporal Kernel for High‐Dimensional Data Mapping</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>25</issue><spage>e2306585</spage><epage>n/a</epage><pages>e2306585-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Compact but precise feature‐extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high‐dimensional space using the time dynamics of a material system, such as a volatile memristor. However, conventional physical RC systems have limited dynamics for the given material properties, restricting the methods to increase their dimensionality. This study proposes an integrated temporal kernel composed of a 2‐memristor and 1‐capacitor (2M1C) using a W/HfO2/TiN memristor and TiN/ZrO2/Al2O3/ZrO2/TiN capacitor to achieve higher dimensionality and tunable dynamics. The kernel elements are carefully designed and fabricated into an integrated array, of which performances are evaluated under diverse conditions. By optimizing the time dynamics of the 2M1C kernel, each memristor simultaneously extracts complementary information from input signals. The MNIST benchmark digit classification task achieves a high accuracy of 94.3% with a (196×10) single‐layer network. Analog input mapping ability is tested with a Mackey‐Glass time series prediction, and the system records a normalized root mean square error of 0.04 with a 20×1 readout network, the smallest readout network ever used for Mackey‐Glass prediction in RC. These performances demonstrate its high potential for efficient temporal data analysis.
An integrated temporal kernel using two memristors and one capacitor is fabricated. This kernel extracts complementary features from the input, ultimately processing MNIST images at 8‐bit to achieve an accuracy of 94.3%. Excellent prediction performance for the Mackey‐Glass time series is verified with NRMSE of 0.04 in minimal network size (20 × 1).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38212281</pmid><doi>10.1002/smll.202306585</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0004-2071-2731</orcidid><orcidid>https://orcid.org/0000-0002-6254-9758</orcidid><orcidid>https://orcid.org/0009-0008-3718-1833</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (25), p.e2306585-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929026830 |
source | Wiley-Blackwell Journals |
subjects | Aluminum oxide analog memristor Capacitors Data analysis dual feature mapping Dynamics Mapping Material properties Memristors neuromorphic hardware Task complexity temporal data processing time series prediction Titanium nitride Zirconium dioxide |
title | 2Memristor‐1Capacitor Integrated Temporal Kernel for High‐Dimensional Data Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T15%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2Memristor%E2%80%901Capacitor%20Integrated%20Temporal%20Kernel%20for%20High%E2%80%90Dimensional%20Data%20Mapping&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Shim,%20Sung%20Keun&rft.date=2024-06-01&rft.volume=20&rft.issue=25&rft.spage=e2306585&rft.epage=n/a&rft.pages=e2306585-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202306585&rft_dat=%3Cproquest_cross%3E2929026830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069539543&rft_id=info:pmid/38212281&rfr_iscdi=true |