Random sketch learning for deep neural networks in edge computing
Despite the great potential of deep neural networks (DNNs), they require massive weights and huge computational resources, creating a vast gap when deploying artificial intelligence at low-cost edge devices. Current lightweight DNNs, achieved by high-dimensional space pre-training and post-compressi...
Gespeichert in:
Veröffentlicht in: | Nature Computational Science 2021-03, Vol.1 (3), p.221-228 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 3 |
container_start_page | 221 |
container_title | Nature Computational Science |
container_volume | 1 |
creator | Li, Bin Chen, Peijun Liu, Hongfu Guo, Weisi Cao, Xianbin Du, Junzhao Zhao, Chenglin Zhang, Jun |
description | Despite the great potential of deep neural networks (DNNs), they require massive weights and huge computational resources, creating a vast gap when deploying artificial intelligence at low-cost edge devices. Current lightweight DNNs, achieved by high-dimensional space pre-training and post-compression, present challenges when covering the resources deficit, making tiny artificial intelligence hard to be implemented. Here we report an architecture named random sketch learning, or Rosler, for computationally efficient tiny artificial intelligence. We build a universal compressing-while-training framework that directly learns a compact model and, most importantly, enables computationally efficient on-device learning. As validated on different models and datasets, it attains substantial memory reduction of ~50-90× (16-bits quantization), compared with fully connected DNNs. We demonstrate it on low-cost hardware, whereby the computation is accelerated by >180× and the energy consumption is reduced by ~10×. Our method paves the way for deploying tiny artificial intelligence in many scientific and industrial applications. |
doi_str_mv | 10.1038/s43588-021-00039-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928996572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928996572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-4967299ea65216437e5b853c9768f7ccb3f1b2f4d523a0f250549e489a3bcd633</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EolXpD7BAXrIJ2L6xYy-ripdUCQnB2nKcmxKaF3YixN8TaEGsZhZnZnEIOefsijPQ1zEFqXXCBE8YY2ASdUTmQimR6FRmx__6jCxjfJsgITkwBadkBppr4EbNyerJtUXX0LjDwb_SGl1oq3ZLyy7QArGnLY7B1VMMH13YRVq1FIstUt81_ThM6Bk5KV0dcXnIBXm5vXle3yebx7uH9WqTeEizIUmNyoQx6JQUXKWQocy1BG8ypcvM-xxKnosyLaQAx0ohmUwNpto4yH2hABbkcv_bh-59xDjYpooe69q12I3RCiO0MUpmYkLFHvWhizFgaftQNS58Ws7stz27t2cne_bHnlXT6OLwP-YNFn-TX1fwBQBlaTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928996572</pqid></control><display><type>article</type><title>Random sketch learning for deep neural networks in edge computing</title><source>SpringerLink Journals</source><creator>Li, Bin ; Chen, Peijun ; Liu, Hongfu ; Guo, Weisi ; Cao, Xianbin ; Du, Junzhao ; Zhao, Chenglin ; Zhang, Jun</creator><creatorcontrib>Li, Bin ; Chen, Peijun ; Liu, Hongfu ; Guo, Weisi ; Cao, Xianbin ; Du, Junzhao ; Zhao, Chenglin ; Zhang, Jun</creatorcontrib><description>Despite the great potential of deep neural networks (DNNs), they require massive weights and huge computational resources, creating a vast gap when deploying artificial intelligence at low-cost edge devices. Current lightweight DNNs, achieved by high-dimensional space pre-training and post-compression, present challenges when covering the resources deficit, making tiny artificial intelligence hard to be implemented. Here we report an architecture named random sketch learning, or Rosler, for computationally efficient tiny artificial intelligence. We build a universal compressing-while-training framework that directly learns a compact model and, most importantly, enables computationally efficient on-device learning. As validated on different models and datasets, it attains substantial memory reduction of ~50-90× (16-bits quantization), compared with fully connected DNNs. We demonstrate it on low-cost hardware, whereby the computation is accelerated by >180× and the energy consumption is reduced by ~10×. Our method paves the way for deploying tiny artificial intelligence in many scientific and industrial applications.</description><identifier>ISSN: 2662-8457</identifier><identifier>EISSN: 2662-8457</identifier><identifier>DOI: 10.1038/s43588-021-00039-6</identifier><identifier>PMID: 38183196</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature Computational Science, 2021-03, Vol.1 (3), p.221-228</ispartof><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-4967299ea65216437e5b853c9768f7ccb3f1b2f4d523a0f250549e489a3bcd633</citedby><cites>FETCH-LOGICAL-c347t-4967299ea65216437e5b853c9768f7ccb3f1b2f4d523a0f250549e489a3bcd633</cites><orcidid>0000-0002-5042-7884 ; 0000-0002-1998-819X ; 0000-0002-3543-9916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38183196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Chen, Peijun</creatorcontrib><creatorcontrib>Liu, Hongfu</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Cao, Xianbin</creatorcontrib><creatorcontrib>Du, Junzhao</creatorcontrib><creatorcontrib>Zhao, Chenglin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Random sketch learning for deep neural networks in edge computing</title><title>Nature Computational Science</title><addtitle>Nat Comput Sci</addtitle><description>Despite the great potential of deep neural networks (DNNs), they require massive weights and huge computational resources, creating a vast gap when deploying artificial intelligence at low-cost edge devices. Current lightweight DNNs, achieved by high-dimensional space pre-training and post-compression, present challenges when covering the resources deficit, making tiny artificial intelligence hard to be implemented. Here we report an architecture named random sketch learning, or Rosler, for computationally efficient tiny artificial intelligence. We build a universal compressing-while-training framework that directly learns a compact model and, most importantly, enables computationally efficient on-device learning. As validated on different models and datasets, it attains substantial memory reduction of ~50-90× (16-bits quantization), compared with fully connected DNNs. We demonstrate it on low-cost hardware, whereby the computation is accelerated by >180× and the energy consumption is reduced by ~10×. Our method paves the way for deploying tiny artificial intelligence in many scientific and industrial applications.</description><issn>2662-8457</issn><issn>2662-8457</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAURC0EolXpD7BAXrIJ2L6xYy-ripdUCQnB2nKcmxKaF3YixN8TaEGsZhZnZnEIOefsijPQ1zEFqXXCBE8YY2ASdUTmQimR6FRmx__6jCxjfJsgITkwBadkBppr4EbNyerJtUXX0LjDwb_SGl1oq3ZLyy7QArGnLY7B1VMMH13YRVq1FIstUt81_ThM6Bk5KV0dcXnIBXm5vXle3yebx7uH9WqTeEizIUmNyoQx6JQUXKWQocy1BG8ypcvM-xxKnosyLaQAx0ohmUwNpto4yH2hABbkcv_bh-59xDjYpooe69q12I3RCiO0MUpmYkLFHvWhizFgaftQNS58Ws7stz27t2cne_bHnlXT6OLwP-YNFn-TX1fwBQBlaTY</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Li, Bin</creator><creator>Chen, Peijun</creator><creator>Liu, Hongfu</creator><creator>Guo, Weisi</creator><creator>Cao, Xianbin</creator><creator>Du, Junzhao</creator><creator>Zhao, Chenglin</creator><creator>Zhang, Jun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5042-7884</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid><orcidid>https://orcid.org/0000-0002-3543-9916</orcidid></search><sort><creationdate>20210301</creationdate><title>Random sketch learning for deep neural networks in edge computing</title><author>Li, Bin ; Chen, Peijun ; Liu, Hongfu ; Guo, Weisi ; Cao, Xianbin ; Du, Junzhao ; Zhao, Chenglin ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-4967299ea65216437e5b853c9768f7ccb3f1b2f4d523a0f250549e489a3bcd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Chen, Peijun</creatorcontrib><creatorcontrib>Liu, Hongfu</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Cao, Xianbin</creatorcontrib><creatorcontrib>Du, Junzhao</creatorcontrib><creatorcontrib>Zhao, Chenglin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Computational Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bin</au><au>Chen, Peijun</au><au>Liu, Hongfu</au><au>Guo, Weisi</au><au>Cao, Xianbin</au><au>Du, Junzhao</au><au>Zhao, Chenglin</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random sketch learning for deep neural networks in edge computing</atitle><jtitle>Nature Computational Science</jtitle><addtitle>Nat Comput Sci</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1</volume><issue>3</issue><spage>221</spage><epage>228</epage><pages>221-228</pages><issn>2662-8457</issn><eissn>2662-8457</eissn><abstract>Despite the great potential of deep neural networks (DNNs), they require massive weights and huge computational resources, creating a vast gap when deploying artificial intelligence at low-cost edge devices. Current lightweight DNNs, achieved by high-dimensional space pre-training and post-compression, present challenges when covering the resources deficit, making tiny artificial intelligence hard to be implemented. Here we report an architecture named random sketch learning, or Rosler, for computationally efficient tiny artificial intelligence. We build a universal compressing-while-training framework that directly learns a compact model and, most importantly, enables computationally efficient on-device learning. As validated on different models and datasets, it attains substantial memory reduction of ~50-90× (16-bits quantization), compared with fully connected DNNs. We demonstrate it on low-cost hardware, whereby the computation is accelerated by >180× and the energy consumption is reduced by ~10×. Our method paves the way for deploying tiny artificial intelligence in many scientific and industrial applications.</abstract><cop>United States</cop><pmid>38183196</pmid><doi>10.1038/s43588-021-00039-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5042-7884</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid><orcidid>https://orcid.org/0000-0002-3543-9916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-8457 |
ispartof | Nature Computational Science, 2021-03, Vol.1 (3), p.221-228 |
issn | 2662-8457 2662-8457 |
language | eng |
recordid | cdi_proquest_miscellaneous_2928996572 |
source | SpringerLink Journals |
title | Random sketch learning for deep neural networks in edge computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20sketch%20learning%20for%20deep%20neural%20networks%20in%20edge%20computing&rft.jtitle=Nature%20Computational%20Science&rft.au=Li,%20Bin&rft.date=2021-03-01&rft.volume=1&rft.issue=3&rft.spage=221&rft.epage=228&rft.pages=221-228&rft.issn=2662-8457&rft.eissn=2662-8457&rft_id=info:doi/10.1038/s43588-021-00039-6&rft_dat=%3Cproquest_cross%3E2928996572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928996572&rft_id=info:pmid/38183196&rfr_iscdi=true |