Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion
Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a hi...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-04, Vol.36 (16), p.e2311764-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e2311764 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Yuan, Qing Huang, Jindou Li, Ang Lu, Na Lu, Wei Zhu, Yongan Zhang, Zhenyi |
description | Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a highly‐efficient solar‐to‐fuels conversion process through “semi‐reversing” the conventional QWs to confine only the photo‐generated electrons. This electron confinement‐improved charge separation is implemented in the well‐designed model of the CdS/TiO2/CdS semi‐reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra‐thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo‐generated electrons of SRQW can be confined on the TiO2‐{101} facets in the vicinity of the CdS/TiO2 hetero‐interface. Thereby, the continuous multi‐electron injection to the adsorbed reactants on the interfacial active‐sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0‐fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4‐product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next‐generation quantum‐sized photocatalysts for solar‐to‐fuels conversion.
The novel strategy of quantum‐confinement‐enhanced charge‐separation is proposed and demonstrated in the well‐designed model photocatalyst of CdS/TiO2/CdS semi‐reversed quantum‐well. This kind of promising photocatalysts is capable of not only confining the photo‐generated electrons nearby the hetero‐interfacial active‐sites, but also accelerating the electron injection to the adsorbed reactants on the interfacial active‐sites, thereby enhancing the photocatalytic activity for solar‐to‐fuels conversion. |
doi_str_mv | 10.1002/adma.202311764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928996502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040208602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-45cbbb24dae71b45fe5757f4a57f0c32e492c301abcf713a9738095587b188a33</originalsourceid><addsrcrecordid>eNqFkc9uEzEQhy1ERUPgyhGtxIXLBv_dtY9RSGmlogIFcbS8zmzqymu39i4oNx6BZ-RJcJpSJC5cZiTrm0-e-SH0guAFwZi-MZvBLCimjJC24Y_QjAhKao6VeIxmWDFRq4bLY_Q052uMsWpw8wQdM0kkwQ2dIb8OWxcAkgvb6hIG9-vHz0_wDVKGTfVxMmGchuoreF99uIpjtGY0fpfHXPUxVadue-V3ZWLd9846CGN1Gb1J5WWMpZxM4HO1imHvczE8Q0e98Rme3_c5-nKy_rw6rc8v3p2tlue1ZS3jNRe26zrKNwZa0nHRg2hF23NTCraMAlfUMkxMZ_uWMKNaJsvCQrYdkdIwNkevD96bFG8nyKMeXLZlCRMgTllTRaVSjShnm6NX_6DXcUqh_E4zzDHFsrmjFgfKpphzgl7fJDeYtNME630Oep-DfsihDLy8107dAJsH_M_hC6AOwHfnYfcfnV6-fb_8K_8NU3aYew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040208602</pqid></control><display><type>article</type><title>Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion</title><source>Wiley-Blackwell Journals</source><creator>Yuan, Qing ; Huang, Jindou ; Li, Ang ; Lu, Na ; Lu, Wei ; Zhu, Yongan ; Zhang, Zhenyi</creator><creatorcontrib>Yuan, Qing ; Huang, Jindou ; Li, Ang ; Lu, Na ; Lu, Wei ; Zhu, Yongan ; Zhang, Zhenyi</creatorcontrib><description>Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a highly‐efficient solar‐to‐fuels conversion process through “semi‐reversing” the conventional QWs to confine only the photo‐generated electrons. This electron confinement‐improved charge separation is implemented in the well‐designed model of the CdS/TiO2/CdS semi‐reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra‐thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo‐generated electrons of SRQW can be confined on the TiO2‐{101} facets in the vicinity of the CdS/TiO2 hetero‐interface. Thereby, the continuous multi‐electron injection to the adsorbed reactants on the interfacial active‐sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0‐fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4‐product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next‐generation quantum‐sized photocatalysts for solar‐to‐fuels conversion.
The novel strategy of quantum‐confinement‐enhanced charge‐separation is proposed and demonstrated in the well‐designed model photocatalyst of CdS/TiO2/CdS semi‐reversed quantum‐well. This kind of promising photocatalysts is capable of not only confining the photo‐generated electrons nearby the hetero‐interfacial active‐sites, but also accelerating the electron injection to the adsorbed reactants on the interfacial active‐sites, thereby enhancing the photocatalytic activity for solar‐to‐fuels conversion.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202311764</identifier><identifier>PMID: 38181062</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cadmium sulfide ; Charge efficiency ; CO2 reduction ; Confinement ; Electrons ; Fuels ; H2 production ; Photocatalysis ; Photocatalysts ; Quantum dots ; Quantum wells ; semiconductors ; Separation ; Titanium dioxide</subject><ispartof>Advanced materials (Weinheim), 2024-04, Vol.36 (16), p.e2311764-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-45cbbb24dae71b45fe5757f4a57f0c32e492c301abcf713a9738095587b188a33</citedby><cites>FETCH-LOGICAL-c3734-45cbbb24dae71b45fe5757f4a57f0c32e492c301abcf713a9738095587b188a33</cites><orcidid>0000-0003-3606-8966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202311764$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202311764$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38181062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Qing</creatorcontrib><creatorcontrib>Huang, Jindou</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Lu, Na</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Zhu, Yongan</creatorcontrib><creatorcontrib>Zhang, Zhenyi</creatorcontrib><title>Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a highly‐efficient solar‐to‐fuels conversion process through “semi‐reversing” the conventional QWs to confine only the photo‐generated electrons. This electron confinement‐improved charge separation is implemented in the well‐designed model of the CdS/TiO2/CdS semi‐reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra‐thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo‐generated electrons of SRQW can be confined on the TiO2‐{101} facets in the vicinity of the CdS/TiO2 hetero‐interface. Thereby, the continuous multi‐electron injection to the adsorbed reactants on the interfacial active‐sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0‐fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4‐product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next‐generation quantum‐sized photocatalysts for solar‐to‐fuels conversion.
The novel strategy of quantum‐confinement‐enhanced charge‐separation is proposed and demonstrated in the well‐designed model photocatalyst of CdS/TiO2/CdS semi‐reversed quantum‐well. This kind of promising photocatalysts is capable of not only confining the photo‐generated electrons nearby the hetero‐interfacial active‐sites, but also accelerating the electron injection to the adsorbed reactants on the interfacial active‐sites, thereby enhancing the photocatalytic activity for solar‐to‐fuels conversion.</description><subject>Cadmium sulfide</subject><subject>Charge efficiency</subject><subject>CO2 reduction</subject><subject>Confinement</subject><subject>Electrons</subject><subject>Fuels</subject><subject>H2 production</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Quantum dots</subject><subject>Quantum wells</subject><subject>semiconductors</subject><subject>Separation</subject><subject>Titanium dioxide</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uEzEQhy1ERUPgyhGtxIXLBv_dtY9RSGmlogIFcbS8zmzqymu39i4oNx6BZ-RJcJpSJC5cZiTrm0-e-SH0guAFwZi-MZvBLCimjJC24Y_QjAhKao6VeIxmWDFRq4bLY_Q052uMsWpw8wQdM0kkwQ2dIb8OWxcAkgvb6hIG9-vHz0_wDVKGTfVxMmGchuoreF99uIpjtGY0fpfHXPUxVadue-V3ZWLd9846CGN1Gb1J5WWMpZxM4HO1imHvczE8Q0e98Rme3_c5-nKy_rw6rc8v3p2tlue1ZS3jNRe26zrKNwZa0nHRg2hF23NTCraMAlfUMkxMZ_uWMKNaJsvCQrYdkdIwNkevD96bFG8nyKMeXLZlCRMgTllTRaVSjShnm6NX_6DXcUqh_E4zzDHFsrmjFgfKpphzgl7fJDeYtNME630Oep-DfsihDLy8107dAJsH_M_hC6AOwHfnYfcfnV6-fb_8K_8NU3aYew</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yuan, Qing</creator><creator>Huang, Jindou</creator><creator>Li, Ang</creator><creator>Lu, Na</creator><creator>Lu, Wei</creator><creator>Zhu, Yongan</creator><creator>Zhang, Zhenyi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3606-8966</orcidid></search><sort><creationdate>20240401</creationdate><title>Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion</title><author>Yuan, Qing ; Huang, Jindou ; Li, Ang ; Lu, Na ; Lu, Wei ; Zhu, Yongan ; Zhang, Zhenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-45cbbb24dae71b45fe5757f4a57f0c32e492c301abcf713a9738095587b188a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cadmium sulfide</topic><topic>Charge efficiency</topic><topic>CO2 reduction</topic><topic>Confinement</topic><topic>Electrons</topic><topic>Fuels</topic><topic>H2 production</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Quantum dots</topic><topic>Quantum wells</topic><topic>semiconductors</topic><topic>Separation</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Qing</creatorcontrib><creatorcontrib>Huang, Jindou</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Lu, Na</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Zhu, Yongan</creatorcontrib><creatorcontrib>Zhang, Zhenyi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Qing</au><au>Huang, Jindou</au><au>Li, Ang</au><au>Lu, Na</au><au>Lu, Wei</au><au>Zhu, Yongan</au><au>Zhang, Zhenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>16</issue><spage>e2311764</spage><epage>n/a</epage><pages>e2311764-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a highly‐efficient solar‐to‐fuels conversion process through “semi‐reversing” the conventional QWs to confine only the photo‐generated electrons. This electron confinement‐improved charge separation is implemented in the well‐designed model of the CdS/TiO2/CdS semi‐reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra‐thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo‐generated electrons of SRQW can be confined on the TiO2‐{101} facets in the vicinity of the CdS/TiO2 hetero‐interface. Thereby, the continuous multi‐electron injection to the adsorbed reactants on the interfacial active‐sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0‐fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4‐product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next‐generation quantum‐sized photocatalysts for solar‐to‐fuels conversion.
The novel strategy of quantum‐confinement‐enhanced charge‐separation is proposed and demonstrated in the well‐designed model photocatalyst of CdS/TiO2/CdS semi‐reversed quantum‐well. This kind of promising photocatalysts is capable of not only confining the photo‐generated electrons nearby the hetero‐interfacial active‐sites, but also accelerating the electron injection to the adsorbed reactants on the interfacial active‐sites, thereby enhancing the photocatalytic activity for solar‐to‐fuels conversion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38181062</pmid><doi>10.1002/adma.202311764</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3606-8966</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-04, Vol.36 (16), p.e2311764-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2928996502 |
source | Wiley-Blackwell Journals |
subjects | Cadmium sulfide Charge efficiency CO2 reduction Confinement Electrons Fuels H2 production Photocatalysis Photocatalysts Quantum dots Quantum wells semiconductors Separation Titanium dioxide |
title | Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Semi%E2%80%90Reversed%20Quantum%20Well%20Photocatalysts%20for%20Highly%E2%80%90Efficient%20Solar%E2%80%90to%E2%80%90Fuels%20Conversion&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yuan,%20Qing&rft.date=2024-04-01&rft.volume=36&rft.issue=16&rft.spage=e2311764&rft.epage=n/a&rft.pages=e2311764-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202311764&rft_dat=%3Cproquest_cross%3E3040208602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040208602&rft_id=info:pmid/38181062&rfr_iscdi=true |