Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion

Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-04, Vol.36 (16), p.e2311764-n/a
Hauptverfasser: Yuan, Qing, Huang, Jindou, Li, Ang, Lu, Na, Lu, Wei, Zhu, Yongan, Zhang, Zhenyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2311764
container_title Advanced materials (Weinheim)
container_volume 36
creator Yuan, Qing
Huang, Jindou
Li, Ang
Lu, Na
Lu, Wei
Zhu, Yongan
Zhang, Zhenyi
description Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a highly‐efficient solar‐to‐fuels conversion process through “semi‐reversing” the conventional QWs to confine only the photo‐generated electrons. This electron confinement‐improved charge separation is implemented in the well‐designed model of the CdS/TiO2/CdS semi‐reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra‐thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo‐generated electrons of SRQW can be confined on the TiO2‐{101} facets in the vicinity of the CdS/TiO2 hetero‐interface. Thereby, the continuous multi‐electron injection to the adsorbed reactants on the interfacial active‐sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0‐fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4‐product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next‐generation quantum‐sized photocatalysts for solar‐to‐fuels conversion. The novel strategy of quantum‐confinement‐enhanced charge‐separation is proposed and demonstrated in the well‐designed model photocatalyst of CdS/TiO2/CdS semi‐reversed quantum‐well. This kind of promising photocatalysts is capable of not only confining the photo‐generated electrons nearby the hetero‐interfacial active‐sites, but also accelerating the electron injection to the adsorbed reactants on the interfacial active‐sites, thereby enhancing the photocatalytic activity for solar‐to‐fuels conversion.
doi_str_mv 10.1002/adma.202311764
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928996502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040208602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-45cbbb24dae71b45fe5757f4a57f0c32e492c301abcf713a9738095587b188a33</originalsourceid><addsrcrecordid>eNqFkc9uEzEQhy1ERUPgyhGtxIXLBv_dtY9RSGmlogIFcbS8zmzqymu39i4oNx6BZ-RJcJpSJC5cZiTrm0-e-SH0guAFwZi-MZvBLCimjJC24Y_QjAhKao6VeIxmWDFRq4bLY_Q052uMsWpw8wQdM0kkwQ2dIb8OWxcAkgvb6hIG9-vHz0_wDVKGTfVxMmGchuoreF99uIpjtGY0fpfHXPUxVadue-V3ZWLd9846CGN1Gb1J5WWMpZxM4HO1imHvczE8Q0e98Rme3_c5-nKy_rw6rc8v3p2tlue1ZS3jNRe26zrKNwZa0nHRg2hF23NTCraMAlfUMkxMZ_uWMKNaJsvCQrYdkdIwNkevD96bFG8nyKMeXLZlCRMgTllTRaVSjShnm6NX_6DXcUqh_E4zzDHFsrmjFgfKpphzgl7fJDeYtNME630Oep-DfsihDLy8107dAJsH_M_hC6AOwHfnYfcfnV6-fb_8K_8NU3aYew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040208602</pqid></control><display><type>article</type><title>Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion</title><source>Wiley-Blackwell Journals</source><creator>Yuan, Qing ; Huang, Jindou ; Li, Ang ; Lu, Na ; Lu, Wei ; Zhu, Yongan ; Zhang, Zhenyi</creator><creatorcontrib>Yuan, Qing ; Huang, Jindou ; Li, Ang ; Lu, Na ; Lu, Wei ; Zhu, Yongan ; Zhang, Zhenyi</creatorcontrib><description>Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a highly‐efficient solar‐to‐fuels conversion process through “semi‐reversing” the conventional QWs to confine only the photo‐generated electrons. This electron confinement‐improved charge separation is implemented in the well‐designed model of the CdS/TiO2/CdS semi‐reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra‐thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo‐generated electrons of SRQW can be confined on the TiO2‐{101} facets in the vicinity of the CdS/TiO2 hetero‐interface. Thereby, the continuous multi‐electron injection to the adsorbed reactants on the interfacial active‐sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0‐fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4‐product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next‐generation quantum‐sized photocatalysts for solar‐to‐fuels conversion. The novel strategy of quantum‐confinement‐enhanced charge‐separation is proposed and demonstrated in the well‐designed model photocatalyst of CdS/TiO2/CdS semi‐reversed quantum‐well. This kind of promising photocatalysts is capable of not only confining the photo‐generated electrons nearby the hetero‐interfacial active‐sites, but also accelerating the electron injection to the adsorbed reactants on the interfacial active‐sites, thereby enhancing the photocatalytic activity for solar‐to‐fuels conversion.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202311764</identifier><identifier>PMID: 38181062</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cadmium sulfide ; Charge efficiency ; CO2 reduction ; Confinement ; Electrons ; Fuels ; H2 production ; Photocatalysis ; Photocatalysts ; Quantum dots ; Quantum wells ; semiconductors ; Separation ; Titanium dioxide</subject><ispartof>Advanced materials (Weinheim), 2024-04, Vol.36 (16), p.e2311764-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-45cbbb24dae71b45fe5757f4a57f0c32e492c301abcf713a9738095587b188a33</citedby><cites>FETCH-LOGICAL-c3734-45cbbb24dae71b45fe5757f4a57f0c32e492c301abcf713a9738095587b188a33</cites><orcidid>0000-0003-3606-8966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202311764$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202311764$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38181062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Qing</creatorcontrib><creatorcontrib>Huang, Jindou</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Lu, Na</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Zhu, Yongan</creatorcontrib><creatorcontrib>Zhang, Zhenyi</creatorcontrib><title>Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a highly‐efficient solar‐to‐fuels conversion process through “semi‐reversing” the conventional QWs to confine only the photo‐generated electrons. This electron confinement‐improved charge separation is implemented in the well‐designed model of the CdS/TiO2/CdS semi‐reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra‐thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo‐generated electrons of SRQW can be confined on the TiO2‐{101} facets in the vicinity of the CdS/TiO2 hetero‐interface. Thereby, the continuous multi‐electron injection to the adsorbed reactants on the interfacial active‐sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0‐fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4‐product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next‐generation quantum‐sized photocatalysts for solar‐to‐fuels conversion. The novel strategy of quantum‐confinement‐enhanced charge‐separation is proposed and demonstrated in the well‐designed model photocatalyst of CdS/TiO2/CdS semi‐reversed quantum‐well. This kind of promising photocatalysts is capable of not only confining the photo‐generated electrons nearby the hetero‐interfacial active‐sites, but also accelerating the electron injection to the adsorbed reactants on the interfacial active‐sites, thereby enhancing the photocatalytic activity for solar‐to‐fuels conversion.</description><subject>Cadmium sulfide</subject><subject>Charge efficiency</subject><subject>CO2 reduction</subject><subject>Confinement</subject><subject>Electrons</subject><subject>Fuels</subject><subject>H2 production</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Quantum dots</subject><subject>Quantum wells</subject><subject>semiconductors</subject><subject>Separation</subject><subject>Titanium dioxide</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uEzEQhy1ERUPgyhGtxIXLBv_dtY9RSGmlogIFcbS8zmzqymu39i4oNx6BZ-RJcJpSJC5cZiTrm0-e-SH0guAFwZi-MZvBLCimjJC24Y_QjAhKao6VeIxmWDFRq4bLY_Q052uMsWpw8wQdM0kkwQ2dIb8OWxcAkgvb6hIG9-vHz0_wDVKGTfVxMmGchuoreF99uIpjtGY0fpfHXPUxVadue-V3ZWLd9846CGN1Gb1J5WWMpZxM4HO1imHvczE8Q0e98Rme3_c5-nKy_rw6rc8v3p2tlue1ZS3jNRe26zrKNwZa0nHRg2hF23NTCraMAlfUMkxMZ_uWMKNaJsvCQrYdkdIwNkevD96bFG8nyKMeXLZlCRMgTllTRaVSjShnm6NX_6DXcUqh_E4zzDHFsrmjFgfKpphzgl7fJDeYtNME630Oep-DfsihDLy8107dAJsH_M_hC6AOwHfnYfcfnV6-fb_8K_8NU3aYew</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yuan, Qing</creator><creator>Huang, Jindou</creator><creator>Li, Ang</creator><creator>Lu, Na</creator><creator>Lu, Wei</creator><creator>Zhu, Yongan</creator><creator>Zhang, Zhenyi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3606-8966</orcidid></search><sort><creationdate>20240401</creationdate><title>Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion</title><author>Yuan, Qing ; Huang, Jindou ; Li, Ang ; Lu, Na ; Lu, Wei ; Zhu, Yongan ; Zhang, Zhenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-45cbbb24dae71b45fe5757f4a57f0c32e492c301abcf713a9738095587b188a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cadmium sulfide</topic><topic>Charge efficiency</topic><topic>CO2 reduction</topic><topic>Confinement</topic><topic>Electrons</topic><topic>Fuels</topic><topic>H2 production</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Quantum dots</topic><topic>Quantum wells</topic><topic>semiconductors</topic><topic>Separation</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Qing</creatorcontrib><creatorcontrib>Huang, Jindou</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Lu, Na</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Zhu, Yongan</creatorcontrib><creatorcontrib>Zhang, Zhenyi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Qing</au><au>Huang, Jindou</au><au>Li, Ang</au><au>Lu, Na</au><au>Lu, Wei</au><au>Zhu, Yongan</au><au>Zhang, Zhenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>16</issue><spage>e2311764</spage><epage>n/a</epage><pages>e2311764-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Semiconductor quantum wells (QWs) exhibit high charge‐utilization efficiency for light‐emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo‐generated charge separation for attaining a highly‐efficient solar‐to‐fuels conversion process through “semi‐reversing” the conventional QWs to confine only the photo‐generated electrons. This electron confinement‐improved charge separation is implemented in the well‐designed model of the CdS/TiO2/CdS semi‐reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra‐thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo‐generated electrons of SRQW can be confined on the TiO2‐{101} facets in the vicinity of the CdS/TiO2 hetero‐interface. Thereby, the continuous multi‐electron injection to the adsorbed reactants on the interfacial active‐sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0‐fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4‐product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next‐generation quantum‐sized photocatalysts for solar‐to‐fuels conversion. The novel strategy of quantum‐confinement‐enhanced charge‐separation is proposed and demonstrated in the well‐designed model photocatalyst of CdS/TiO2/CdS semi‐reversed quantum‐well. This kind of promising photocatalysts is capable of not only confining the photo‐generated electrons nearby the hetero‐interfacial active‐sites, but also accelerating the electron injection to the adsorbed reactants on the interfacial active‐sites, thereby enhancing the photocatalytic activity for solar‐to‐fuels conversion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38181062</pmid><doi>10.1002/adma.202311764</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3606-8966</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-04, Vol.36 (16), p.e2311764-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2928996502
source Wiley-Blackwell Journals
subjects Cadmium sulfide
Charge efficiency
CO2 reduction
Confinement
Electrons
Fuels
H2 production
Photocatalysis
Photocatalysts
Quantum dots
Quantum wells
semiconductors
Separation
Titanium dioxide
title Engineering Semi‐Reversed Quantum Well Photocatalysts for Highly‐Efficient Solar‐to‐Fuels Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Semi%E2%80%90Reversed%20Quantum%20Well%20Photocatalysts%20for%20Highly%E2%80%90Efficient%20Solar%E2%80%90to%E2%80%90Fuels%20Conversion&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yuan,%20Qing&rft.date=2024-04-01&rft.volume=36&rft.issue=16&rft.spage=e2311764&rft.epage=n/a&rft.pages=e2311764-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202311764&rft_dat=%3Cproquest_cross%3E3040208602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040208602&rft_id=info:pmid/38181062&rfr_iscdi=true