A probabilistic theory of random maps
We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are deriv...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2005-10, Vol.10 (7), p.747-763 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 763 |
---|---|
container_issue | 7 |
container_start_page | 747 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 10 |
creator | Elbeyli, O. Sun, J.Q. |
description | We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are derived, and the reliability and first passage time problem are also studied. Examples are presented to demonstrate the application of the theoretical development. Numerical solutions including the time histories of moment evolution, steady state probability density function, reliability and first passage time probability density function for time discrete random maps are included. The present work compliments the existing theory of continuous time stochastic processes. |
doi_str_mv | 10.1016/j.cnsns.2004.03.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29289499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570404000589</els_id><sourcerecordid>29289499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-23ccb782a3a3c1292eb3bf7203c91c0302d68a0cad3a0523583b992a0601c7663</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCViywJZw9iVxPDBUFf-kSiwwW87FEa6SuNgpEt8elzIzvTe839PdY-yaQ8GB13fbgqY4xUIAlAVgkeSELXgjm1wKWZ4mDyDzSkJ5zi5i3EKiVFUu2M0q2wXfmtYNLs6OsvnD-vCd-T4LZur8mI1mFy_ZWW-GaK_-dMneHx_e1s_55vXpZb3a5CRKNecCiVrZCIMGiQslbIttLwUgKU6AILq6MUCmQwOVwKrBVilhoAZOsq5xyW6Pvemmz72Nsx5dJDsMZrJ-H3WqbFSpVAriMUjBxxhsr3fBjSZ8aw76MIne6t9J9GESDaiTJOr-SNn0w5ezQUdydiLbuWBp1p13__I_M2xpRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29289499</pqid></control><display><type>article</type><title>A probabilistic theory of random maps</title><source>Access via ScienceDirect (Elsevier)</source><creator>Elbeyli, O. ; Sun, J.Q.</creator><creatorcontrib>Elbeyli, O. ; Sun, J.Q.</creatorcontrib><description>We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are derived, and the reliability and first passage time problem are also studied. Examples are presented to demonstrate the application of the theoretical development. Numerical solutions including the time histories of moment evolution, steady state probability density function, reliability and first passage time probability density function for time discrete random maps are included. The present work compliments the existing theory of continuous time stochastic processes.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2004.03.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Discrete stochastic systems ; First passage time probability ; FPK equation ; Moment equations ; Nonlinear PDEs ; Random maps ; Reliability</subject><ispartof>Communications in nonlinear science & numerical simulation, 2005-10, Vol.10 (7), p.747-763</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-23ccb782a3a3c1292eb3bf7203c91c0302d68a0cad3a0523583b992a0601c7663</citedby><cites>FETCH-LOGICAL-c249t-23ccb782a3a3c1292eb3bf7203c91c0302d68a0cad3a0523583b992a0601c7663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2004.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Elbeyli, O.</creatorcontrib><creatorcontrib>Sun, J.Q.</creatorcontrib><title>A probabilistic theory of random maps</title><title>Communications in nonlinear science & numerical simulation</title><description>We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are derived, and the reliability and first passage time problem are also studied. Examples are presented to demonstrate the application of the theoretical development. Numerical solutions including the time histories of moment evolution, steady state probability density function, reliability and first passage time probability density function for time discrete random maps are included. The present work compliments the existing theory of continuous time stochastic processes.</description><subject>Discrete stochastic systems</subject><subject>First passage time probability</subject><subject>FPK equation</subject><subject>Moment equations</subject><subject>Nonlinear PDEs</subject><subject>Random maps</subject><subject>Reliability</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCViywJZw9iVxPDBUFf-kSiwwW87FEa6SuNgpEt8elzIzvTe839PdY-yaQ8GB13fbgqY4xUIAlAVgkeSELXgjm1wKWZ4mDyDzSkJ5zi5i3EKiVFUu2M0q2wXfmtYNLs6OsvnD-vCd-T4LZur8mI1mFy_ZWW-GaK_-dMneHx_e1s_55vXpZb3a5CRKNecCiVrZCIMGiQslbIttLwUgKU6AILq6MUCmQwOVwKrBVilhoAZOsq5xyW6Pvemmz72Nsx5dJDsMZrJ-H3WqbFSpVAriMUjBxxhsr3fBjSZ8aw76MIne6t9J9GESDaiTJOr-SNn0w5ezQUdydiLbuWBp1p13__I_M2xpRg</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Elbeyli, O.</creator><creator>Sun, J.Q.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200510</creationdate><title>A probabilistic theory of random maps</title><author>Elbeyli, O. ; Sun, J.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-23ccb782a3a3c1292eb3bf7203c91c0302d68a0cad3a0523583b992a0601c7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Discrete stochastic systems</topic><topic>First passage time probability</topic><topic>FPK equation</topic><topic>Moment equations</topic><topic>Nonlinear PDEs</topic><topic>Random maps</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbeyli, O.</creatorcontrib><creatorcontrib>Sun, J.Q.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbeyli, O.</au><au>Sun, J.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic theory of random maps</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2005-10</date><risdate>2005</risdate><volume>10</volume><issue>7</issue><spage>747</spage><epage>763</epage><pages>747-763</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are derived, and the reliability and first passage time problem are also studied. Examples are presented to demonstrate the application of the theoretical development. Numerical solutions including the time histories of moment evolution, steady state probability density function, reliability and first passage time probability density function for time discrete random maps are included. The present work compliments the existing theory of continuous time stochastic processes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2004.03.004</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2005-10, Vol.10 (7), p.747-763 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_miscellaneous_29289499 |
source | Access via ScienceDirect (Elsevier) |
subjects | Discrete stochastic systems First passage time probability FPK equation Moment equations Nonlinear PDEs Random maps Reliability |
title | A probabilistic theory of random maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20theory%20of%20random%20maps&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Elbeyli,%20O.&rft.date=2005-10&rft.volume=10&rft.issue=7&rft.spage=747&rft.epage=763&rft.pages=747-763&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2004.03.004&rft_dat=%3Cproquest_cross%3E29289499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29289499&rft_id=info:pmid/&rft_els_id=S1007570404000589&rfr_iscdi=true |