A probabilistic theory of random maps

We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2005-10, Vol.10 (7), p.747-763
Hauptverfasser: Elbeyli, O., Sun, J.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 763
container_issue 7
container_start_page 747
container_title Communications in nonlinear science & numerical simulation
container_volume 10
creator Elbeyli, O.
Sun, J.Q.
description We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are derived, and the reliability and first passage time problem are also studied. Examples are presented to demonstrate the application of the theoretical development. Numerical solutions including the time histories of moment evolution, steady state probability density function, reliability and first passage time probability density function for time discrete random maps are included. The present work compliments the existing theory of continuous time stochastic processes.
doi_str_mv 10.1016/j.cnsns.2004.03.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29289499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570404000589</els_id><sourcerecordid>29289499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-23ccb782a3a3c1292eb3bf7203c91c0302d68a0cad3a0523583b992a0601c7663</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCViywJZw9iVxPDBUFf-kSiwwW87FEa6SuNgpEt8elzIzvTe839PdY-yaQ8GB13fbgqY4xUIAlAVgkeSELXgjm1wKWZ4mDyDzSkJ5zi5i3EKiVFUu2M0q2wXfmtYNLs6OsvnD-vCd-T4LZur8mI1mFy_ZWW-GaK_-dMneHx_e1s_55vXpZb3a5CRKNecCiVrZCIMGiQslbIttLwUgKU6AILq6MUCmQwOVwKrBVilhoAZOsq5xyW6Pvemmz72Nsx5dJDsMZrJ-H3WqbFSpVAriMUjBxxhsr3fBjSZ8aw76MIne6t9J9GESDaiTJOr-SNn0w5ezQUdydiLbuWBp1p13__I_M2xpRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29289499</pqid></control><display><type>article</type><title>A probabilistic theory of random maps</title><source>Access via ScienceDirect (Elsevier)</source><creator>Elbeyli, O. ; Sun, J.Q.</creator><creatorcontrib>Elbeyli, O. ; Sun, J.Q.</creatorcontrib><description>We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are derived, and the reliability and first passage time problem are also studied. Examples are presented to demonstrate the application of the theoretical development. Numerical solutions including the time histories of moment evolution, steady state probability density function, reliability and first passage time probability density function for time discrete random maps are included. The present work compliments the existing theory of continuous time stochastic processes.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2004.03.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Discrete stochastic systems ; First passage time probability ; FPK equation ; Moment equations ; Nonlinear PDEs ; Random maps ; Reliability</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2005-10, Vol.10 (7), p.747-763</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-23ccb782a3a3c1292eb3bf7203c91c0302d68a0cad3a0523583b992a0601c7663</citedby><cites>FETCH-LOGICAL-c249t-23ccb782a3a3c1292eb3bf7203c91c0302d68a0cad3a0523583b992a0601c7663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2004.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Elbeyli, O.</creatorcontrib><creatorcontrib>Sun, J.Q.</creatorcontrib><title>A probabilistic theory of random maps</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are derived, and the reliability and first passage time problem are also studied. Examples are presented to demonstrate the application of the theoretical development. Numerical solutions including the time histories of moment evolution, steady state probability density function, reliability and first passage time probability density function for time discrete random maps are included. The present work compliments the existing theory of continuous time stochastic processes.</description><subject>Discrete stochastic systems</subject><subject>First passage time probability</subject><subject>FPK equation</subject><subject>Moment equations</subject><subject>Nonlinear PDEs</subject><subject>Random maps</subject><subject>Reliability</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCViywJZw9iVxPDBUFf-kSiwwW87FEa6SuNgpEt8elzIzvTe839PdY-yaQ8GB13fbgqY4xUIAlAVgkeSELXgjm1wKWZ4mDyDzSkJ5zi5i3EKiVFUu2M0q2wXfmtYNLs6OsvnD-vCd-T4LZur8mI1mFy_ZWW-GaK_-dMneHx_e1s_55vXpZb3a5CRKNecCiVrZCIMGiQslbIttLwUgKU6AILq6MUCmQwOVwKrBVilhoAZOsq5xyW6Pvemmz72Nsx5dJDsMZrJ-H3WqbFSpVAriMUjBxxhsr3fBjSZ8aw76MIne6t9J9GESDaiTJOr-SNn0w5ezQUdydiLbuWBp1p13__I_M2xpRg</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Elbeyli, O.</creator><creator>Sun, J.Q.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200510</creationdate><title>A probabilistic theory of random maps</title><author>Elbeyli, O. ; Sun, J.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-23ccb782a3a3c1292eb3bf7203c91c0302d68a0cad3a0523583b992a0601c7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Discrete stochastic systems</topic><topic>First passage time probability</topic><topic>FPK equation</topic><topic>Moment equations</topic><topic>Nonlinear PDEs</topic><topic>Random maps</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbeyli, O.</creatorcontrib><creatorcontrib>Sun, J.Q.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbeyli, O.</au><au>Sun, J.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic theory of random maps</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2005-10</date><risdate>2005</risdate><volume>10</volume><issue>7</issue><spage>747</spage><epage>763</epage><pages>747-763</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>We present a probabilistic theory of random maps with discrete time and continuous state. The forward and backward Kolmogorov equations as well as the FPK equation governing the evolution of the probability density function of the system are derived. The moment equations of arbitrary order are derived, and the reliability and first passage time problem are also studied. Examples are presented to demonstrate the application of the theoretical development. Numerical solutions including the time histories of moment evolution, steady state probability density function, reliability and first passage time probability density function for time discrete random maps are included. The present work compliments the existing theory of continuous time stochastic processes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2004.03.004</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2005-10, Vol.10 (7), p.747-763
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_29289499
source Access via ScienceDirect (Elsevier)
subjects Discrete stochastic systems
First passage time probability
FPK equation
Moment equations
Nonlinear PDEs
Random maps
Reliability
title A probabilistic theory of random maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20theory%20of%20random%20maps&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Elbeyli,%20O.&rft.date=2005-10&rft.volume=10&rft.issue=7&rft.spage=747&rft.epage=763&rft.pages=747-763&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2004.03.004&rft_dat=%3Cproquest_cross%3E29289499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29289499&rft_id=info:pmid/&rft_els_id=S1007570404000589&rfr_iscdi=true