Modeling how antibody responses may determine the efficacy of COVID-19 vaccines

Predicting the efficacy of COVID-19 vaccines would aid vaccine development and usage strategies, which is of importance given their limited supplies. Here we develop a multiscale mathematical model that proposes mechanistic links between COVID-19 vaccine efficacies and the neutralizing antibody (NAb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Computational Science 2022-02, Vol.2 (2), p.123-131
Hauptverfasser: Padmanabhan, Pranesh, Desikan, Rajat, Dixit, Narendra M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 2
container_start_page 123
container_title Nature Computational Science
container_volume 2
creator Padmanabhan, Pranesh
Desikan, Rajat
Dixit, Narendra M
description Predicting the efficacy of COVID-19 vaccines would aid vaccine development and usage strategies, which is of importance given their limited supplies. Here we develop a multiscale mathematical model that proposes mechanistic links between COVID-19 vaccine efficacies and the neutralizing antibody (NAb) responses they elicit. We hypothesized that the collection of all NAbs would constitute a shape space and that responses of individuals are random samples from this space. We constructed the shape space by analyzing reported in vitro dose-response curves of ~80 NAbs. Sampling NAb subsets from the space, we recapitulated the responses of convalescent patients. We assumed that vaccination would elicit similar NAb responses. We developed a model of within-host SARS-CoV-2 dynamics, applied it to virtual patient populations and, invoking the NAb responses above, predicted vaccine efficacies. Our predictions quantitatively captured the efficacies from clinical trials. Our study thus suggests plausible mechanistic underpinnings of COVID-19 vaccines and generates testable hypotheses for establishing them.
doi_str_mv 10.1038/s43588-022-00198-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928926610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928926610</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-a004152790c20e7975376cd4ff1fc4efa31dc87814039df07bab850bed1c05ad3</originalsourceid><addsrcrecordid>eNo1kDtPwzAURi0kRKvSP8CAPLIYrl-xM6LyqlTUBVgjx76mQXkRp6D8eyIB0_cNR2c4hFxwuOYg7U1SUlvLQAgGwPP5nZClyDLBrNJmQdYpfQCA0FxCJs_IQlpujBZySfbPXcC6at_pofumrh2rsgsTHTD1XZsw0cZNNOCIQ1O1SMcDUoyx8s5PtIt0s3_b3jGe0y_n_Qykc3IaXZ1w_bcr8vpw_7J5Yrv943Zzu2M9V3xkDkBxLUwOXgCa3GhpMh9UjDx6hdFJHrw1liuQeYhgSldaDSUG7kG7IFfk6tfbD93nEdNYNFXyWNeuxe6YCpELm88J5j4rcvmHHssGQ9EPVeOGqfiPIH8AyNtcxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928926610</pqid></control><display><type>article</type><title>Modeling how antibody responses may determine the efficacy of COVID-19 vaccines</title><source>Springer Nature - Complete Springer Journals</source><creator>Padmanabhan, Pranesh ; Desikan, Rajat ; Dixit, Narendra M</creator><creatorcontrib>Padmanabhan, Pranesh ; Desikan, Rajat ; Dixit, Narendra M</creatorcontrib><description>Predicting the efficacy of COVID-19 vaccines would aid vaccine development and usage strategies, which is of importance given their limited supplies. Here we develop a multiscale mathematical model that proposes mechanistic links between COVID-19 vaccine efficacies and the neutralizing antibody (NAb) responses they elicit. We hypothesized that the collection of all NAbs would constitute a shape space and that responses of individuals are random samples from this space. We constructed the shape space by analyzing reported in vitro dose-response curves of ~80 NAbs. Sampling NAb subsets from the space, we recapitulated the responses of convalescent patients. We assumed that vaccination would elicit similar NAb responses. We developed a model of within-host SARS-CoV-2 dynamics, applied it to virtual patient populations and, invoking the NAb responses above, predicted vaccine efficacies. Our predictions quantitatively captured the efficacies from clinical trials. Our study thus suggests plausible mechanistic underpinnings of COVID-19 vaccines and generates testable hypotheses for establishing them.</description><identifier>EISSN: 2662-8457</identifier><identifier>DOI: 10.1038/s43588-022-00198-0</identifier><identifier>PMID: 38177523</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature Computational Science, 2022-02, Vol.2 (2), p.123-131</ispartof><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0785-8187 ; 0000-0001-5569-8731 ; 0000-0002-2145-9828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38177523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Padmanabhan, Pranesh</creatorcontrib><creatorcontrib>Desikan, Rajat</creatorcontrib><creatorcontrib>Dixit, Narendra M</creatorcontrib><title>Modeling how antibody responses may determine the efficacy of COVID-19 vaccines</title><title>Nature Computational Science</title><addtitle>Nat Comput Sci</addtitle><description>Predicting the efficacy of COVID-19 vaccines would aid vaccine development and usage strategies, which is of importance given their limited supplies. Here we develop a multiscale mathematical model that proposes mechanistic links between COVID-19 vaccine efficacies and the neutralizing antibody (NAb) responses they elicit. We hypothesized that the collection of all NAbs would constitute a shape space and that responses of individuals are random samples from this space. We constructed the shape space by analyzing reported in vitro dose-response curves of ~80 NAbs. Sampling NAb subsets from the space, we recapitulated the responses of convalescent patients. We assumed that vaccination would elicit similar NAb responses. We developed a model of within-host SARS-CoV-2 dynamics, applied it to virtual patient populations and, invoking the NAb responses above, predicted vaccine efficacies. Our predictions quantitatively captured the efficacies from clinical trials. Our study thus suggests plausible mechanistic underpinnings of COVID-19 vaccines and generates testable hypotheses for establishing them.</description><issn>2662-8457</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1kDtPwzAURi0kRKvSP8CAPLIYrl-xM6LyqlTUBVgjx76mQXkRp6D8eyIB0_cNR2c4hFxwuOYg7U1SUlvLQAgGwPP5nZClyDLBrNJmQdYpfQCA0FxCJs_IQlpujBZySfbPXcC6at_pofumrh2rsgsTHTD1XZsw0cZNNOCIQ1O1SMcDUoyx8s5PtIt0s3_b3jGe0y_n_Qykc3IaXZ1w_bcr8vpw_7J5Yrv943Zzu2M9V3xkDkBxLUwOXgCa3GhpMh9UjDx6hdFJHrw1liuQeYhgSldaDSUG7kG7IFfk6tfbD93nEdNYNFXyWNeuxe6YCpELm88J5j4rcvmHHssGQ9EPVeOGqfiPIH8AyNtcxA</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Padmanabhan, Pranesh</creator><creator>Desikan, Rajat</creator><creator>Dixit, Narendra M</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0785-8187</orcidid><orcidid>https://orcid.org/0000-0001-5569-8731</orcidid><orcidid>https://orcid.org/0000-0002-2145-9828</orcidid></search><sort><creationdate>202202</creationdate><title>Modeling how antibody responses may determine the efficacy of COVID-19 vaccines</title><author>Padmanabhan, Pranesh ; Desikan, Rajat ; Dixit, Narendra M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-a004152790c20e7975376cd4ff1fc4efa31dc87814039df07bab850bed1c05ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padmanabhan, Pranesh</creatorcontrib><creatorcontrib>Desikan, Rajat</creatorcontrib><creatorcontrib>Dixit, Narendra M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Computational Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padmanabhan, Pranesh</au><au>Desikan, Rajat</au><au>Dixit, Narendra M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling how antibody responses may determine the efficacy of COVID-19 vaccines</atitle><jtitle>Nature Computational Science</jtitle><addtitle>Nat Comput Sci</addtitle><date>2022-02</date><risdate>2022</risdate><volume>2</volume><issue>2</issue><spage>123</spage><epage>131</epage><pages>123-131</pages><eissn>2662-8457</eissn><abstract>Predicting the efficacy of COVID-19 vaccines would aid vaccine development and usage strategies, which is of importance given their limited supplies. Here we develop a multiscale mathematical model that proposes mechanistic links between COVID-19 vaccine efficacies and the neutralizing antibody (NAb) responses they elicit. We hypothesized that the collection of all NAbs would constitute a shape space and that responses of individuals are random samples from this space. We constructed the shape space by analyzing reported in vitro dose-response curves of ~80 NAbs. Sampling NAb subsets from the space, we recapitulated the responses of convalescent patients. We assumed that vaccination would elicit similar NAb responses. We developed a model of within-host SARS-CoV-2 dynamics, applied it to virtual patient populations and, invoking the NAb responses above, predicted vaccine efficacies. Our predictions quantitatively captured the efficacies from clinical trials. Our study thus suggests plausible mechanistic underpinnings of COVID-19 vaccines and generates testable hypotheses for establishing them.</abstract><cop>United States</cop><pmid>38177523</pmid><doi>10.1038/s43588-022-00198-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0785-8187</orcidid><orcidid>https://orcid.org/0000-0001-5569-8731</orcidid><orcidid>https://orcid.org/0000-0002-2145-9828</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2662-8457
ispartof Nature Computational Science, 2022-02, Vol.2 (2), p.123-131
issn 2662-8457
language eng
recordid cdi_proquest_miscellaneous_2928926610
source Springer Nature - Complete Springer Journals
title Modeling how antibody responses may determine the efficacy of COVID-19 vaccines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20how%20antibody%20responses%20may%20determine%20the%20efficacy%20of%20COVID-19%20vaccines&rft.jtitle=Nature%20Computational%20Science&rft.au=Padmanabhan,%20Pranesh&rft.date=2022-02&rft.volume=2&rft.issue=2&rft.spage=123&rft.epage=131&rft.pages=123-131&rft.eissn=2662-8457&rft_id=info:doi/10.1038/s43588-022-00198-0&rft_dat=%3Cproquest_pubme%3E2928926610%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928926610&rft_id=info:pmid/38177523&rfr_iscdi=true