Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes
Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic te...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-02, Vol.16 (8), p.10033-10041 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10041 |
---|---|
container_issue | 8 |
container_start_page | 10033 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Kim, Jungyu Koo, Bonhyeop Khammari, Anahita Park, Kwanghee Lee, Hochun Kwak, Kyungwon Cho, Minhaeng |
description | Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles. |
doi_str_mv | 10.1021/acsami.3c15609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928856240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928856240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-af25de0d5fc425ac599526a37ab19cd4a81ad9b11ec56a3e837f42f1af36628f3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqWwMiKPCCnFP3GajFUptFIRC4gxch2bukrsYjtDNt6BN-RJcJXSjekeXX336J4DwDVGY4wIvufC80aPqcAsQ8UJGOIiTZOcMHJ61Gk6ABfebxHKKEHsHAxoTieU4HwIxDsP0v18fS-tgUsTNRdBR_0go260kR6GjYTPdq1rHTpoFYyoh9rAhf7Y1B2cWSOkCS4aVXD62UrbejivpQjO1l2Q_hKcKV57eXWYI_D2OH-dLZLVy9NyNl0lnFIUEq4IqySqmBIpYVywomAk43TC17gQVcpzzKtijbEULK5lzKBSojBXNMtIrugI3Pa-O2fjGz6UjfZC1jU3-59KUpA8ZxlJUUTHPSqc9d5JVe6cbrjrSozKfbFlX2x5KDYe3By823UjqyP-12QE7nogHpZb2zoTo_7n9gur2IVV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928856240</pqid></control><display><type>article</type><title>Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes</title><source>ACS Publications</source><creator>Kim, Jungyu ; Koo, Bonhyeop ; Khammari, Anahita ; Park, Kwanghee ; Lee, Hochun ; Kwak, Kyungwon ; Cho, Minhaeng</creator><creatorcontrib>Kim, Jungyu ; Koo, Bonhyeop ; Khammari, Anahita ; Park, Kwanghee ; Lee, Hochun ; Kwak, Kyungwon ; Cho, Minhaeng</creatorcontrib><description>Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c15609</identifier><identifier>PMID: 38373218</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2024-02, Vol.16 (8), p.10033-10041</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-af25de0d5fc425ac599526a37ab19cd4a81ad9b11ec56a3e837f42f1af36628f3</citedby><cites>FETCH-LOGICAL-a330t-af25de0d5fc425ac599526a37ab19cd4a81ad9b11ec56a3e837f42f1af36628f3</cites><orcidid>0000-0003-1618-1056 ; 0000-0001-9907-5915 ; 0000-0003-1680-0996 ; 0000-0002-7666-8328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c15609$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c15609$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38373218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jungyu</creatorcontrib><creatorcontrib>Koo, Bonhyeop</creatorcontrib><creatorcontrib>Khammari, Anahita</creatorcontrib><creatorcontrib>Park, Kwanghee</creatorcontrib><creatorcontrib>Lee, Hochun</creatorcontrib><creatorcontrib>Kwak, Kyungwon</creatorcontrib><creatorcontrib>Cho, Minhaeng</creatorcontrib><title>Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EoqWwMiKPCCnFP3GajFUptFIRC4gxch2bukrsYjtDNt6BN-RJcJXSjekeXX336J4DwDVGY4wIvufC80aPqcAsQ8UJGOIiTZOcMHJ61Gk6ABfebxHKKEHsHAxoTieU4HwIxDsP0v18fS-tgUsTNRdBR_0go260kR6GjYTPdq1rHTpoFYyoh9rAhf7Y1B2cWSOkCS4aVXD62UrbejivpQjO1l2Q_hKcKV57eXWYI_D2OH-dLZLVy9NyNl0lnFIUEq4IqySqmBIpYVywomAk43TC17gQVcpzzKtijbEULK5lzKBSojBXNMtIrugI3Pa-O2fjGz6UjfZC1jU3-59KUpA8ZxlJUUTHPSqc9d5JVe6cbrjrSozKfbFlX2x5KDYe3By823UjqyP-12QE7nogHpZb2zoTo_7n9gur2IVV</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Kim, Jungyu</creator><creator>Koo, Bonhyeop</creator><creator>Khammari, Anahita</creator><creator>Park, Kwanghee</creator><creator>Lee, Hochun</creator><creator>Kwak, Kyungwon</creator><creator>Cho, Minhaeng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1618-1056</orcidid><orcidid>https://orcid.org/0000-0001-9907-5915</orcidid><orcidid>https://orcid.org/0000-0003-1680-0996</orcidid><orcidid>https://orcid.org/0000-0002-7666-8328</orcidid></search><sort><creationdate>20240228</creationdate><title>Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes</title><author>Kim, Jungyu ; Koo, Bonhyeop ; Khammari, Anahita ; Park, Kwanghee ; Lee, Hochun ; Kwak, Kyungwon ; Cho, Minhaeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-af25de0d5fc425ac599526a37ab19cd4a81ad9b11ec56a3e837f42f1af36628f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jungyu</creatorcontrib><creatorcontrib>Koo, Bonhyeop</creatorcontrib><creatorcontrib>Khammari, Anahita</creatorcontrib><creatorcontrib>Park, Kwanghee</creatorcontrib><creatorcontrib>Lee, Hochun</creatorcontrib><creatorcontrib>Kwak, Kyungwon</creatorcontrib><creatorcontrib>Cho, Minhaeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jungyu</au><au>Koo, Bonhyeop</au><au>Khammari, Anahita</au><au>Park, Kwanghee</au><au>Lee, Hochun</au><au>Kwak, Kyungwon</au><au>Cho, Minhaeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>16</volume><issue>8</issue><spage>10033</spage><epage>10041</epage><pages>10033-10041</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38373218</pmid><doi>10.1021/acsami.3c15609</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1618-1056</orcidid><orcidid>https://orcid.org/0000-0001-9907-5915</orcidid><orcidid>https://orcid.org/0000-0003-1680-0996</orcidid><orcidid>https://orcid.org/0000-0002-7666-8328</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-02, Vol.16 (8), p.10033-10041 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2928856240 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%93Ion%20Interaction%20Determines%20the%20Mobility%20of%20Ions%20in%20Highly%20Concentrated%20Aqueous%20Electrolytes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kim,%20Jungyu&rft.date=2024-02-28&rft.volume=16&rft.issue=8&rft.spage=10033&rft.epage=10041&rft.pages=10033-10041&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c15609&rft_dat=%3Cproquest_cross%3E2928856240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928856240&rft_id=info:pmid/38373218&rfr_iscdi=true |