Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes

Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-02, Vol.16 (8), p.10033-10041
Hauptverfasser: Kim, Jungyu, Koo, Bonhyeop, Khammari, Anahita, Park, Kwanghee, Lee, Hochun, Kwak, Kyungwon, Cho, Minhaeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10041
container_issue 8
container_start_page 10033
container_title ACS applied materials & interfaces
container_volume 16
creator Kim, Jungyu
Koo, Bonhyeop
Khammari, Anahita
Park, Kwanghee
Lee, Hochun
Kwak, Kyungwon
Cho, Minhaeng
description Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.
doi_str_mv 10.1021/acsami.3c15609
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928856240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928856240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-af25de0d5fc425ac599526a37ab19cd4a81ad9b11ec56a3e837f42f1af36628f3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqWwMiKPCCnFP3GajFUptFIRC4gxch2bukrsYjtDNt6BN-RJcJXSjekeXX336J4DwDVGY4wIvufC80aPqcAsQ8UJGOIiTZOcMHJ61Gk6ABfebxHKKEHsHAxoTieU4HwIxDsP0v18fS-tgUsTNRdBR_0go260kR6GjYTPdq1rHTpoFYyoh9rAhf7Y1B2cWSOkCS4aVXD62UrbejivpQjO1l2Q_hKcKV57eXWYI_D2OH-dLZLVy9NyNl0lnFIUEq4IqySqmBIpYVywomAk43TC17gQVcpzzKtijbEULK5lzKBSojBXNMtIrugI3Pa-O2fjGz6UjfZC1jU3-59KUpA8ZxlJUUTHPSqc9d5JVe6cbrjrSozKfbFlX2x5KDYe3By823UjqyP-12QE7nogHpZb2zoTo_7n9gur2IVV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928856240</pqid></control><display><type>article</type><title>Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes</title><source>ACS Publications</source><creator>Kim, Jungyu ; Koo, Bonhyeop ; Khammari, Anahita ; Park, Kwanghee ; Lee, Hochun ; Kwak, Kyungwon ; Cho, Minhaeng</creator><creatorcontrib>Kim, Jungyu ; Koo, Bonhyeop ; Khammari, Anahita ; Park, Kwanghee ; Lee, Hochun ; Kwak, Kyungwon ; Cho, Minhaeng</creatorcontrib><description>Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c15609</identifier><identifier>PMID: 38373218</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-02, Vol.16 (8), p.10033-10041</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-af25de0d5fc425ac599526a37ab19cd4a81ad9b11ec56a3e837f42f1af36628f3</citedby><cites>FETCH-LOGICAL-a330t-af25de0d5fc425ac599526a37ab19cd4a81ad9b11ec56a3e837f42f1af36628f3</cites><orcidid>0000-0003-1618-1056 ; 0000-0001-9907-5915 ; 0000-0003-1680-0996 ; 0000-0002-7666-8328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c15609$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c15609$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38373218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jungyu</creatorcontrib><creatorcontrib>Koo, Bonhyeop</creatorcontrib><creatorcontrib>Khammari, Anahita</creatorcontrib><creatorcontrib>Park, Kwanghee</creatorcontrib><creatorcontrib>Lee, Hochun</creatorcontrib><creatorcontrib>Kwak, Kyungwon</creatorcontrib><creatorcontrib>Cho, Minhaeng</creatorcontrib><title>Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EoqWwMiKPCCnFP3GajFUptFIRC4gxch2bukrsYjtDNt6BN-RJcJXSjekeXX336J4DwDVGY4wIvufC80aPqcAsQ8UJGOIiTZOcMHJ61Gk6ABfebxHKKEHsHAxoTieU4HwIxDsP0v18fS-tgUsTNRdBR_0go260kR6GjYTPdq1rHTpoFYyoh9rAhf7Y1B2cWSOkCS4aVXD62UrbejivpQjO1l2Q_hKcKV57eXWYI_D2OH-dLZLVy9NyNl0lnFIUEq4IqySqmBIpYVywomAk43TC17gQVcpzzKtijbEULK5lzKBSojBXNMtIrugI3Pa-O2fjGz6UjfZC1jU3-59KUpA8ZxlJUUTHPSqc9d5JVe6cbrjrSozKfbFlX2x5KDYe3By823UjqyP-12QE7nogHpZb2zoTo_7n9gur2IVV</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Kim, Jungyu</creator><creator>Koo, Bonhyeop</creator><creator>Khammari, Anahita</creator><creator>Park, Kwanghee</creator><creator>Lee, Hochun</creator><creator>Kwak, Kyungwon</creator><creator>Cho, Minhaeng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1618-1056</orcidid><orcidid>https://orcid.org/0000-0001-9907-5915</orcidid><orcidid>https://orcid.org/0000-0003-1680-0996</orcidid><orcidid>https://orcid.org/0000-0002-7666-8328</orcidid></search><sort><creationdate>20240228</creationdate><title>Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes</title><author>Kim, Jungyu ; Koo, Bonhyeop ; Khammari, Anahita ; Park, Kwanghee ; Lee, Hochun ; Kwak, Kyungwon ; Cho, Minhaeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-af25de0d5fc425ac599526a37ab19cd4a81ad9b11ec56a3e837f42f1af36628f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jungyu</creatorcontrib><creatorcontrib>Koo, Bonhyeop</creatorcontrib><creatorcontrib>Khammari, Anahita</creatorcontrib><creatorcontrib>Park, Kwanghee</creatorcontrib><creatorcontrib>Lee, Hochun</creatorcontrib><creatorcontrib>Kwak, Kyungwon</creatorcontrib><creatorcontrib>Cho, Minhaeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jungyu</au><au>Koo, Bonhyeop</au><au>Khammari, Anahita</au><au>Park, Kwanghee</au><au>Lee, Hochun</au><au>Kwak, Kyungwon</au><au>Cho, Minhaeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>16</volume><issue>8</issue><spage>10033</spage><epage>10041</epage><pages>10033-10041</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solvation engineering plays a critical role in tailoring the performance of batteries, particularly through the use of highly concentrated electrolytes, which offer heterogeneous solvation structures of mobile ions with distinct electrochemical properties. In this study, we employed spectroscopic techniques and molecular dynamics simulations to investigate mixed-cation (Li+/K+) acetate aqueous electrolytes. Our research unravels the pivotal role of water in facilitating ion transport within a highly viscous medium. Notably, Li+ cations primarily form ion aggregates, predominantly interacting with acetate anions, while K+ cations emerge as the principal charge carriers, which is attributed to their strong interaction with water molecules. Intriguingly, even at a concentration as high as 40 m, a substantial amount of water molecules persistently engages in hydrogen bonding with one another, creating mobile regions rich in K+ ions. Our observations of a redshift of the OH stretching band of water suggest that the strength of the hydrogen bond alone cannot account for the expansion of the electrochemical stability window. These findings offer valuable insights into the cation transfer mechanism, shedding light on the contribution of water-bound cations to both the ion conductivity and the electrochemical stability window of aqueous electrolytes for rechargeable batteries. Our comprehensive molecular-level understanding of the interplay between cations and water provides a foundation for future advances in solvation engineering, leading to the development of high-performance batteries with improved energy storage and safety profiles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38373218</pmid><doi>10.1021/acsami.3c15609</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1618-1056</orcidid><orcidid>https://orcid.org/0000-0001-9907-5915</orcidid><orcidid>https://orcid.org/0000-0003-1680-0996</orcidid><orcidid>https://orcid.org/0000-0002-7666-8328</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-02, Vol.16 (8), p.10033-10041
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2928856240
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Water–Ion Interaction Determines the Mobility of Ions in Highly Concentrated Aqueous Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%93Ion%20Interaction%20Determines%20the%20Mobility%20of%20Ions%20in%20Highly%20Concentrated%20Aqueous%20Electrolytes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kim,%20Jungyu&rft.date=2024-02-28&rft.volume=16&rft.issue=8&rft.spage=10033&rft.epage=10041&rft.pages=10033-10041&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c15609&rft_dat=%3Cproquest_cross%3E2928856240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928856240&rft_id=info:pmid/38373218&rfr_iscdi=true