Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell

The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-03, Vol.63 (13), p.e202317628-n/a
Hauptverfasser: Zhang, Chao, Hao, Xiaobin, Wang, Jiatang, Ding, Xiayu, Zhong, Yuan, Jiang, Yawen, Wu, Ming‐Chung, Long, Ran, Gong, Wanbing, Liang, Changhao, Cai, Weiwei, Low, Jingxiang, Xiong, Yujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page e202317628
container_title Angewandte Chemie International Edition
container_volume 63
creator Zhang, Chao
Hao, Xiaobin
Wang, Jiatang
Ding, Xiayu
Zhong, Yuan
Jiang, Yawen
Wu, Ming‐Chung
Long, Ran
Gong, Wanbing
Liang, Changhao
Cai, Weiwei
Low, Jingxiang
Xiong, Yujie
description The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial‐level current densities (i.e., 200 mA cm−2) for 300 h on membrane electrode assembly using scalable lattice‐distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm−2, reaching a production rate of 21.7 mmol cm−2 h−1. To assess the practicality of this system, we perform a comprehensive techno‐economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air‐breathing formic acid fuel cells, boasting a power density of 55 mW cm−2 and an exceptional thermal efficiency of 20.1 %. The continuous production of pure formic acid solution with high concentration (2 M) for more than 300 h was achieved by using an MEA electrolyzer containing solid state electrolytes equipped with our developed moist heat ventilation collection system. The resultant formic acid could directly serve as the fuel for air‐breathing formic acid fuel cells, which closed the carbon cycle loop of the formic acid economy.
doi_str_mv 10.1002/anie.202317628
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928854488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958163563</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3438-23d208b565df2c767b6168c12c3d18f21cd75c82f6721fb7b88783f60e5545c33</originalsourceid><addsrcrecordid>eNpdkbtPwzAQxi0EoqWwMiJLLCwpfsT2dazSFioVusBsJY5TucqjOA0o_z2uWjow3eun03f3IXRPyZgSwp7T2tkxI4xTJRlcoCEVjEZcKX4Z8pjzSIGgA3TTttvAAxB5jQYcOBExsCF6S5ra2Hrv073N8aLxlTN4alyOC99UOFkzPC-t2fum7FvX4qLxeOZ86JQ9nnn37eoNXnS2xIkty1t0VaRla-9OcYQ-F_OP5DVarV-WyXQVbXjMIWI8ZwQyIUVeMKOkyiSVYCgzPKdQMGpyJQywQipGi0xlAAp4IYkVIhaG8xF6Ou7d-ears-1eV641QUBa26ZrNZuES0UcAwT08R-6bTpfB3WBEkAlF_Kw8OFEdVllc73zrkp9r_8eFYDJEfhxpe3Pc0r0wQZ9sEGfbdDT9-X8XPFfqPJ4iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958163563</pqid></control><display><type>article</type><title>Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell</title><source>Access via Wiley Online Library</source><creator>Zhang, Chao ; Hao, Xiaobin ; Wang, Jiatang ; Ding, Xiayu ; Zhong, Yuan ; Jiang, Yawen ; Wu, Ming‐Chung ; Long, Ran ; Gong, Wanbing ; Liang, Changhao ; Cai, Weiwei ; Low, Jingxiang ; Xiong, Yujie</creator><creatorcontrib>Zhang, Chao ; Hao, Xiaobin ; Wang, Jiatang ; Ding, Xiayu ; Zhong, Yuan ; Jiang, Yawen ; Wu, Ming‐Chung ; Long, Ran ; Gong, Wanbing ; Liang, Changhao ; Cai, Weiwei ; Low, Jingxiang ; Xiong, Yujie</creatorcontrib><description>The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial‐level current densities (i.e., 200 mA cm−2) for 300 h on membrane electrode assembly using scalable lattice‐distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm−2, reaching a production rate of 21.7 mmol cm−2 h−1. To assess the practicality of this system, we perform a comprehensive techno‐economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air‐breathing formic acid fuel cells, boasting a power density of 55 mW cm−2 and an exceptional thermal efficiency of 20.1 %. The continuous production of pure formic acid solution with high concentration (2 M) for more than 300 h was achieved by using an MEA electrolyzer containing solid state electrolytes equipped with our developed moist heat ventilation collection system. The resultant formic acid could directly serve as the fuel for air‐breathing formic acid fuel cells, which closed the carbon cycle loop of the formic acid economy.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202317628</identifier><identifier>PMID: 38305482</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acid production ; Acids ; Bismuth ; Carbon cycle ; Carbon dioxide ; Catalysts ; Current density ; direct formic acid fuel cell ; Economic analysis ; electrochemical CO2 reduction ; Electrochemistry ; Electrodes ; Electrolysis ; Electrolytic cells ; Formic acid ; Fuel cells ; Fuel technology ; lattice distortion ; Life cycle analysis ; Life cycle assessment ; Life cycles ; Methyl formate ; pure formic acid solution ; solid electrolyte ; Thermodynamic efficiency</subject><ispartof>Angewandte Chemie International Edition, 2024-03, Vol.63 (13), p.e202317628-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1995-8257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202317628$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202317628$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38305482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Hao, Xiaobin</creatorcontrib><creatorcontrib>Wang, Jiatang</creatorcontrib><creatorcontrib>Ding, Xiayu</creatorcontrib><creatorcontrib>Zhong, Yuan</creatorcontrib><creatorcontrib>Jiang, Yawen</creatorcontrib><creatorcontrib>Wu, Ming‐Chung</creatorcontrib><creatorcontrib>Long, Ran</creatorcontrib><creatorcontrib>Gong, Wanbing</creatorcontrib><creatorcontrib>Liang, Changhao</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Low, Jingxiang</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><title>Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial‐level current densities (i.e., 200 mA cm−2) for 300 h on membrane electrode assembly using scalable lattice‐distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm−2, reaching a production rate of 21.7 mmol cm−2 h−1. To assess the practicality of this system, we perform a comprehensive techno‐economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air‐breathing formic acid fuel cells, boasting a power density of 55 mW cm−2 and an exceptional thermal efficiency of 20.1 %. The continuous production of pure formic acid solution with high concentration (2 M) for more than 300 h was achieved by using an MEA electrolyzer containing solid state electrolytes equipped with our developed moist heat ventilation collection system. The resultant formic acid could directly serve as the fuel for air‐breathing formic acid fuel cells, which closed the carbon cycle loop of the formic acid economy.</description><subject>Acid production</subject><subject>Acids</subject><subject>Bismuth</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Current density</subject><subject>direct formic acid fuel cell</subject><subject>Economic analysis</subject><subject>electrochemical CO2 reduction</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Formic acid</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>lattice distortion</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Life cycles</subject><subject>Methyl formate</subject><subject>pure formic acid solution</subject><subject>solid electrolyte</subject><subject>Thermodynamic efficiency</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkbtPwzAQxi0EoqWwMiJLLCwpfsT2dazSFioVusBsJY5TucqjOA0o_z2uWjow3eun03f3IXRPyZgSwp7T2tkxI4xTJRlcoCEVjEZcKX4Z8pjzSIGgA3TTttvAAxB5jQYcOBExsCF6S5ra2Hrv073N8aLxlTN4alyOC99UOFkzPC-t2fum7FvX4qLxeOZ86JQ9nnn37eoNXnS2xIkty1t0VaRla-9OcYQ-F_OP5DVarV-WyXQVbXjMIWI8ZwQyIUVeMKOkyiSVYCgzPKdQMGpyJQywQipGi0xlAAp4IYkVIhaG8xF6Ou7d-ears-1eV641QUBa26ZrNZuES0UcAwT08R-6bTpfB3WBEkAlF_Kw8OFEdVllc73zrkp9r_8eFYDJEfhxpe3Pc0r0wQZ9sEGfbdDT9-X8XPFfqPJ4iQ</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>Zhang, Chao</creator><creator>Hao, Xiaobin</creator><creator>Wang, Jiatang</creator><creator>Ding, Xiayu</creator><creator>Zhong, Yuan</creator><creator>Jiang, Yawen</creator><creator>Wu, Ming‐Chung</creator><creator>Long, Ran</creator><creator>Gong, Wanbing</creator><creator>Liang, Changhao</creator><creator>Cai, Weiwei</creator><creator>Low, Jingxiang</creator><creator>Xiong, Yujie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1995-8257</orcidid></search><sort><creationdate>20240322</creationdate><title>Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell</title><author>Zhang, Chao ; Hao, Xiaobin ; Wang, Jiatang ; Ding, Xiayu ; Zhong, Yuan ; Jiang, Yawen ; Wu, Ming‐Chung ; Long, Ran ; Gong, Wanbing ; Liang, Changhao ; Cai, Weiwei ; Low, Jingxiang ; Xiong, Yujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3438-23d208b565df2c767b6168c12c3d18f21cd75c82f6721fb7b88783f60e5545c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Bismuth</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Current density</topic><topic>direct formic acid fuel cell</topic><topic>Economic analysis</topic><topic>electrochemical CO2 reduction</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Formic acid</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>lattice distortion</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Life cycles</topic><topic>Methyl formate</topic><topic>pure formic acid solution</topic><topic>solid electrolyte</topic><topic>Thermodynamic efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Hao, Xiaobin</creatorcontrib><creatorcontrib>Wang, Jiatang</creatorcontrib><creatorcontrib>Ding, Xiayu</creatorcontrib><creatorcontrib>Zhong, Yuan</creatorcontrib><creatorcontrib>Jiang, Yawen</creatorcontrib><creatorcontrib>Wu, Ming‐Chung</creatorcontrib><creatorcontrib>Long, Ran</creatorcontrib><creatorcontrib>Gong, Wanbing</creatorcontrib><creatorcontrib>Liang, Changhao</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Low, Jingxiang</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chao</au><au>Hao, Xiaobin</au><au>Wang, Jiatang</au><au>Ding, Xiayu</au><au>Zhong, Yuan</au><au>Jiang, Yawen</au><au>Wu, Ming‐Chung</au><au>Long, Ran</au><au>Gong, Wanbing</au><au>Liang, Changhao</au><au>Cai, Weiwei</au><au>Low, Jingxiang</au><au>Xiong, Yujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-03-22</date><risdate>2024</risdate><volume>63</volume><issue>13</issue><spage>e202317628</spage><epage>n/a</epage><pages>e202317628-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial‐level current densities (i.e., 200 mA cm−2) for 300 h on membrane electrode assembly using scalable lattice‐distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm−2, reaching a production rate of 21.7 mmol cm−2 h−1. To assess the practicality of this system, we perform a comprehensive techno‐economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air‐breathing formic acid fuel cells, boasting a power density of 55 mW cm−2 and an exceptional thermal efficiency of 20.1 %. The continuous production of pure formic acid solution with high concentration (2 M) for more than 300 h was achieved by using an MEA electrolyzer containing solid state electrolytes equipped with our developed moist heat ventilation collection system. The resultant formic acid could directly serve as the fuel for air‐breathing formic acid fuel cells, which closed the carbon cycle loop of the formic acid economy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38305482</pmid><doi>10.1002/anie.202317628</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-1995-8257</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-03, Vol.63 (13), p.e202317628-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2928854488
source Access via Wiley Online Library
subjects Acid production
Acids
Bismuth
Carbon cycle
Carbon dioxide
Catalysts
Current density
direct formic acid fuel cell
Economic analysis
electrochemical CO2 reduction
Electrochemistry
Electrodes
Electrolysis
Electrolytic cells
Formic acid
Fuel cells
Fuel technology
lattice distortion
Life cycle analysis
Life cycle assessment
Life cycles
Methyl formate
pure formic acid solution
solid electrolyte
Thermodynamic efficiency
title Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concentrated%20Formic%20Acid%20from%20CO2%20Electrolysis%20for%20Directly%20Driving%20Fuel%20Cell&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Chao&rft.date=2024-03-22&rft.volume=63&rft.issue=13&rft.spage=e202317628&rft.epage=n/a&rft.pages=e202317628-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202317628&rft_dat=%3Cproquest_pubme%3E2958163563%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958163563&rft_id=info:pmid/38305482&rfr_iscdi=true