RhoGDIβ inhibition via miR‐200c/AUF1/SOX2/miR‐137 axis contributed to lncRNA MEG3 downregulation‐mediated malignant transformation of human bronchial epithelial cells

Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular carcinogenesis 2024-05, Vol.63 (5), p.977-990
Hauptverfasser: Yang, Yichao, Tian, Zhongxian, He, Lijiong, Meng, Hao, Xie, Xiaomin, Yang, Ziyi, Wang, Xinxing, Zhao, Yunping, Huang, Chuanshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 5
container_start_page 977
container_title Molecular carcinogenesis
container_volume 63
creator Yang, Yichao
Tian, Zhongxian
He, Lijiong
Meng, Hao
Xie, Xiaomin
Yang, Ziyi
Wang, Xinxing
Zhao, Yunping
Huang, Chuanshu
description Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIβ. Notably, artificially increasing RhoGDIβ levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIβ contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c‐Jun activity, which in turn promoted miR‐200c transcription. High levels of miR‐200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR‐137, SP‐1 protein translation, and the suppression of RhoGDIβ mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co‐regulation of RhoGDIβ expression by long noncoding RNA MEG3, multiple microRNAs (miR‐200c and miR‐137), and RNA‐regulated transcription factors (c‐Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIβ pathway.
doi_str_mv 10.1002/mc.23702
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928853484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928853484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3442-c6180664e30033977e4cecee427da4ea9bff4ba98a1836aba81b71e333542f7e3</originalsourceid><addsrcrecordid>eNp1kU1u1DAUxy0EotOCxAmQJTZs0vHXxPZyNLRDpZZKA5XYRY7npXGV2IOd9GPXI3CRbnoQDsFJSGYKSEis_GT93s_v-Y_QG0oOKSFs2tpDxiVhz9CEEq0yJoV4jiZEaZ1RreQe2k_pihBK5Yy8RHtccZlzISboYVWH5YeTH4_Y-dqVrnPB42tncOtWP--_M0LsdH5xTKefz78O72wvKZfY3LqEbfBddGXfwRp3ATferj7N8dnRkuN1uPERLvvGjMahqYW1MyPYmsZdeuM73EXjUxViu2VwqHDdt8bjMgZva2caDBvX1dCMpYWmSa_Qi8o0CV4_nQfo4vjoy-Jjdnq-PFnMTzM7LMUym1NF8lwAJ4RzLSUICxZAMLk2Aowuq0qURitDFc9NaRQtJQXO-UywSgI_QO933k0M33pIXdG6NE5gPIQ-FUwzpWZcKDGg7_5Br0If_TBdwQmXXM200n-FNoaUIlTFJrrWxLuCkmKMsGhtsY1wQN8-Cfty-LQ_4O_MBiDbATeugbv_ioqzxU74C6AHqBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037385989</pqid></control><display><type>article</type><title>RhoGDIβ inhibition via miR‐200c/AUF1/SOX2/miR‐137 axis contributed to lncRNA MEG3 downregulation‐mediated malignant transformation of human bronchial epithelial cells</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Yang, Yichao ; Tian, Zhongxian ; He, Lijiong ; Meng, Hao ; Xie, Xiaomin ; Yang, Ziyi ; Wang, Xinxing ; Zhao, Yunping ; Huang, Chuanshu</creator><creatorcontrib>Yang, Yichao ; Tian, Zhongxian ; He, Lijiong ; Meng, Hao ; Xie, Xiaomin ; Yang, Ziyi ; Wang, Xinxing ; Zhao, Yunping ; Huang, Chuanshu</creatorcontrib><description>Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIβ. Notably, artificially increasing RhoGDIβ levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIβ contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c‐Jun activity, which in turn promoted miR‐200c transcription. High levels of miR‐200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR‐137, SP‐1 protein translation, and the suppression of RhoGDIβ mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co‐regulation of RhoGDIβ expression by long noncoding RNA MEG3, multiple microRNAs (miR‐200c and miR‐137), and RNA‐regulated transcription factors (c‐Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIβ pathway.</description><identifier>ISSN: 0899-1987</identifier><identifier>EISSN: 1098-2744</identifier><identifier>DOI: 10.1002/mc.23702</identifier><identifier>PMID: 38376344</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>AUF1 protein ; Carcinogens ; Cell Proliferation - genetics ; cell transformation ; Cell Transformation, Neoplastic - genetics ; Disease prevention ; Down-Regulation ; Epithelial cells ; Epithelial Cells - metabolism ; Gene expression ; Genetic transformation ; Humans ; lncRNA MEG3 ; Lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - pathology ; Medical treatment ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; miR‐137 ; miR‐200c ; Molecular modelling ; Nickel ; Non-coding RNA ; Proteins ; rho Guanine Nucleotide Dissociation Inhibitor beta - genetics ; RhoGDIβ ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA, Messenger ; SOXB1 Transcription Factors - genetics ; Transcription factors ; Translation ; Tumorigenesis</subject><ispartof>Molecular carcinogenesis, 2024-05, Vol.63 (5), p.977-990</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC.</rights><rights>2024 The Authors. Molecular Carcinogenesis published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3442-c6180664e30033977e4cecee427da4ea9bff4ba98a1836aba81b71e333542f7e3</cites><orcidid>0000-0003-1650-3297 ; 0000-0002-3155-8803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmc.23702$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmc.23702$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38376344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yichao</creatorcontrib><creatorcontrib>Tian, Zhongxian</creatorcontrib><creatorcontrib>He, Lijiong</creatorcontrib><creatorcontrib>Meng, Hao</creatorcontrib><creatorcontrib>Xie, Xiaomin</creatorcontrib><creatorcontrib>Yang, Ziyi</creatorcontrib><creatorcontrib>Wang, Xinxing</creatorcontrib><creatorcontrib>Zhao, Yunping</creatorcontrib><creatorcontrib>Huang, Chuanshu</creatorcontrib><title>RhoGDIβ inhibition via miR‐200c/AUF1/SOX2/miR‐137 axis contributed to lncRNA MEG3 downregulation‐mediated malignant transformation of human bronchial epithelial cells</title><title>Molecular carcinogenesis</title><addtitle>Mol Carcinog</addtitle><description>Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIβ. Notably, artificially increasing RhoGDIβ levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIβ contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c‐Jun activity, which in turn promoted miR‐200c transcription. High levels of miR‐200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR‐137, SP‐1 protein translation, and the suppression of RhoGDIβ mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co‐regulation of RhoGDIβ expression by long noncoding RNA MEG3, multiple microRNAs (miR‐200c and miR‐137), and RNA‐regulated transcription factors (c‐Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIβ pathway.</description><subject>AUF1 protein</subject><subject>Carcinogens</subject><subject>Cell Proliferation - genetics</subject><subject>cell transformation</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Disease prevention</subject><subject>Down-Regulation</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene expression</subject><subject>Genetic transformation</subject><subject>Humans</subject><subject>lncRNA MEG3</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical treatment</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>miR‐137</subject><subject>miR‐200c</subject><subject>Molecular modelling</subject><subject>Nickel</subject><subject>Non-coding RNA</subject><subject>Proteins</subject><subject>rho Guanine Nucleotide Dissociation Inhibitor beta - genetics</subject><subject>RhoGDIβ</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA, Messenger</subject><subject>SOXB1 Transcription Factors - genetics</subject><subject>Transcription factors</subject><subject>Translation</subject><subject>Tumorigenesis</subject><issn>0899-1987</issn><issn>1098-2744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1u1DAUxy0EotOCxAmQJTZs0vHXxPZyNLRDpZZKA5XYRY7npXGV2IOd9GPXI3CRbnoQDsFJSGYKSEis_GT93s_v-Y_QG0oOKSFs2tpDxiVhz9CEEq0yJoV4jiZEaZ1RreQe2k_pihBK5Yy8RHtccZlzISboYVWH5YeTH4_Y-dqVrnPB42tncOtWP--_M0LsdH5xTKefz78O72wvKZfY3LqEbfBddGXfwRp3ATferj7N8dnRkuN1uPERLvvGjMahqYW1MyPYmsZdeuM73EXjUxViu2VwqHDdt8bjMgZva2caDBvX1dCMpYWmSa_Qi8o0CV4_nQfo4vjoy-Jjdnq-PFnMTzM7LMUym1NF8lwAJ4RzLSUICxZAMLk2Aowuq0qURitDFc9NaRQtJQXO-UywSgI_QO933k0M33pIXdG6NE5gPIQ-FUwzpWZcKDGg7_5Br0If_TBdwQmXXM200n-FNoaUIlTFJrrWxLuCkmKMsGhtsY1wQN8-Cfty-LQ_4O_MBiDbATeugbv_ioqzxU74C6AHqBo</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Yang, Yichao</creator><creator>Tian, Zhongxian</creator><creator>He, Lijiong</creator><creator>Meng, Hao</creator><creator>Xie, Xiaomin</creator><creator>Yang, Ziyi</creator><creator>Wang, Xinxing</creator><creator>Zhao, Yunping</creator><creator>Huang, Chuanshu</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1650-3297</orcidid><orcidid>https://orcid.org/0000-0002-3155-8803</orcidid></search><sort><creationdate>202405</creationdate><title>RhoGDIβ inhibition via miR‐200c/AUF1/SOX2/miR‐137 axis contributed to lncRNA MEG3 downregulation‐mediated malignant transformation of human bronchial epithelial cells</title><author>Yang, Yichao ; Tian, Zhongxian ; He, Lijiong ; Meng, Hao ; Xie, Xiaomin ; Yang, Ziyi ; Wang, Xinxing ; Zhao, Yunping ; Huang, Chuanshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3442-c6180664e30033977e4cecee427da4ea9bff4ba98a1836aba81b71e333542f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AUF1 protein</topic><topic>Carcinogens</topic><topic>Cell Proliferation - genetics</topic><topic>cell transformation</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Disease prevention</topic><topic>Down-Regulation</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene expression</topic><topic>Genetic transformation</topic><topic>Humans</topic><topic>lncRNA MEG3</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical treatment</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>miR‐137</topic><topic>miR‐200c</topic><topic>Molecular modelling</topic><topic>Nickel</topic><topic>Non-coding RNA</topic><topic>Proteins</topic><topic>rho Guanine Nucleotide Dissociation Inhibitor beta - genetics</topic><topic>RhoGDIβ</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA, Messenger</topic><topic>SOXB1 Transcription Factors - genetics</topic><topic>Transcription factors</topic><topic>Translation</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yichao</creatorcontrib><creatorcontrib>Tian, Zhongxian</creatorcontrib><creatorcontrib>He, Lijiong</creatorcontrib><creatorcontrib>Meng, Hao</creatorcontrib><creatorcontrib>Xie, Xiaomin</creatorcontrib><creatorcontrib>Yang, Ziyi</creatorcontrib><creatorcontrib>Wang, Xinxing</creatorcontrib><creatorcontrib>Zhao, Yunping</creatorcontrib><creatorcontrib>Huang, Chuanshu</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular carcinogenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yichao</au><au>Tian, Zhongxian</au><au>He, Lijiong</au><au>Meng, Hao</au><au>Xie, Xiaomin</au><au>Yang, Ziyi</au><au>Wang, Xinxing</au><au>Zhao, Yunping</au><au>Huang, Chuanshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RhoGDIβ inhibition via miR‐200c/AUF1/SOX2/miR‐137 axis contributed to lncRNA MEG3 downregulation‐mediated malignant transformation of human bronchial epithelial cells</atitle><jtitle>Molecular carcinogenesis</jtitle><addtitle>Mol Carcinog</addtitle><date>2024-05</date><risdate>2024</risdate><volume>63</volume><issue>5</issue><spage>977</spage><epage>990</epage><pages>977-990</pages><issn>0899-1987</issn><eissn>1098-2744</eissn><abstract>Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIβ. Notably, artificially increasing RhoGDIβ levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIβ contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c‐Jun activity, which in turn promoted miR‐200c transcription. High levels of miR‐200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR‐137, SP‐1 protein translation, and the suppression of RhoGDIβ mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co‐regulation of RhoGDIβ expression by long noncoding RNA MEG3, multiple microRNAs (miR‐200c and miR‐137), and RNA‐regulated transcription factors (c‐Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIβ pathway.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38376344</pmid><doi>10.1002/mc.23702</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1650-3297</orcidid><orcidid>https://orcid.org/0000-0002-3155-8803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-1987
ispartof Molecular carcinogenesis, 2024-05, Vol.63 (5), p.977-990
issn 0899-1987
1098-2744
language eng
recordid cdi_proquest_miscellaneous_2928853484
source MEDLINE; Wiley Journals
subjects AUF1 protein
Carcinogens
Cell Proliferation - genetics
cell transformation
Cell Transformation, Neoplastic - genetics
Disease prevention
Down-Regulation
Epithelial cells
Epithelial Cells - metabolism
Gene expression
Genetic transformation
Humans
lncRNA MEG3
Lung cancer
Lung Neoplasms - genetics
Lung Neoplasms - pathology
Medical treatment
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
miR‐137
miR‐200c
Molecular modelling
Nickel
Non-coding RNA
Proteins
rho Guanine Nucleotide Dissociation Inhibitor beta - genetics
RhoGDIβ
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Messenger
SOXB1 Transcription Factors - genetics
Transcription factors
Translation
Tumorigenesis
title RhoGDIβ inhibition via miR‐200c/AUF1/SOX2/miR‐137 axis contributed to lncRNA MEG3 downregulation‐mediated malignant transformation of human bronchial epithelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RhoGDI%CE%B2%20inhibition%20via%20miR%E2%80%90200c/AUF1/SOX2/miR%E2%80%90137%20axis%20contributed%20to%20lncRNA%20MEG3%20downregulation%E2%80%90mediated%20malignant%20transformation%20of%20human%20bronchial%20epithelial%20cells&rft.jtitle=Molecular%20carcinogenesis&rft.au=Yang,%20Yichao&rft.date=2024-05&rft.volume=63&rft.issue=5&rft.spage=977&rft.epage=990&rft.pages=977-990&rft.issn=0899-1987&rft.eissn=1098-2744&rft_id=info:doi/10.1002/mc.23702&rft_dat=%3Cproquest_cross%3E2928853484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037385989&rft_id=info:pmid/38376344&rfr_iscdi=true