3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments

The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-02, Vol.16 (8), p.9626-9639
Hauptverfasser: Haixia, Xu, Peng, Ziyue, Jiezhao, Lin, Huiling, Gao, Xie, Changnan, Yihan, Wang, Yanglei, Jin, Li, Jianjun, Wang, Chengqiang, Wenning, Xu, Lixin, Zhu, Liu, Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9639
container_issue 8
container_start_page 9626
container_title ACS applied materials & interfaces
container_volume 16
creator Haixia, Xu
Peng, Ziyue
Jiezhao, Lin
Huiling, Gao
Xie, Changnan
Yihan, Wang
Yanglei, Jin
Li, Jianjun
Wang, Chengqiang
Wenning, Xu
Lixin, Zhu
Liu, Chun
description The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment.
doi_str_mv 10.1021/acsami.3c10807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928586065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928586065</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-183d5289476b21574228b8d65418182c657d60c6165f6eb3966cecfb9fd339fb3</originalsourceid><addsrcrecordid>eNp1kU9v1DAUxC0EoqVw5Yh8REhZ_Cd2nCNqC1RqtStazpFjP3ddJfZiO6L9NHxVvNqlN05vpPnNSE-D0HtKVpQw-lmbrGe_4oYSRboX6JT2bdsoJtjLZ922J-hNzg-ESM6IeI1OuOIdY1ydoj_8otkkHwpYfKPvA2S_zHgDKT56C81VMDHtYtJ7_9Zo5-JkM_7tyxbfLrloH6qxfny6h4B_wAQ6A9bB4suw1cFUb7ONJZYtpFlP-14Xq6oOrgKvc4GYdTJx1vhmmYqfo63cXQJdZgglv0WvnJ4yvDveM_Tz6-Xd-ffmev3t6vzLdaM5J6WhilvBVN92cmRUdC1jalRWipYqqpiRorOSGEmlcBJG3ktpwLixd5bz3o38DH089O5S_LVALsPss4Fp0gHikgfWMyWUJFJUdHVATYo5J3DDLvlZp6eBkmE_ynAYZTiOUgMfjt3LOIN9xv-tUIFPB6AGh4e4pFBf_V_bX1n1mes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928586065</pqid></control><display><type>article</type><title>3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments</title><source>ACS Publications</source><creator>Haixia, Xu ; Peng, Ziyue ; Jiezhao, Lin ; Huiling, Gao ; Xie, Changnan ; Yihan, Wang ; Yanglei, Jin ; Li, Jianjun ; Wang, Chengqiang ; Wenning, Xu ; Lixin, Zhu ; Liu, Chun</creator><creatorcontrib>Haixia, Xu ; Peng, Ziyue ; Jiezhao, Lin ; Huiling, Gao ; Xie, Changnan ; Yihan, Wang ; Yanglei, Jin ; Li, Jianjun ; Wang, Chengqiang ; Wenning, Xu ; Lixin, Zhu ; Liu, Chun</creatorcontrib><description>The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c10807</identifier><identifier>PMID: 38372238</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials &amp; interfaces, 2024-02, Vol.16 (8), p.9626-9639</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-183d5289476b21574228b8d65418182c657d60c6165f6eb3966cecfb9fd339fb3</citedby><cites>FETCH-LOGICAL-a330t-183d5289476b21574228b8d65418182c657d60c6165f6eb3966cecfb9fd339fb3</cites><orcidid>0000-0001-7187-0482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c10807$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c10807$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38372238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haixia, Xu</creatorcontrib><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Jiezhao, Lin</creatorcontrib><creatorcontrib>Huiling, Gao</creatorcontrib><creatorcontrib>Xie, Changnan</creatorcontrib><creatorcontrib>Yihan, Wang</creatorcontrib><creatorcontrib>Yanglei, Jin</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Wenning, Xu</creatorcontrib><creatorcontrib>Lixin, Zhu</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><title>3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAUxC0EoqVw5Yh8REhZ_Cd2nCNqC1RqtStazpFjP3ddJfZiO6L9NHxVvNqlN05vpPnNSE-D0HtKVpQw-lmbrGe_4oYSRboX6JT2bdsoJtjLZ922J-hNzg-ESM6IeI1OuOIdY1ydoj_8otkkHwpYfKPvA2S_zHgDKT56C81VMDHtYtJ7_9Zo5-JkM_7tyxbfLrloH6qxfny6h4B_wAQ6A9bB4suw1cFUb7ONJZYtpFlP-14Xq6oOrgKvc4GYdTJx1vhmmYqfo63cXQJdZgglv0WvnJ4yvDveM_Tz6-Xd-ffmev3t6vzLdaM5J6WhilvBVN92cmRUdC1jalRWipYqqpiRorOSGEmlcBJG3ktpwLixd5bz3o38DH089O5S_LVALsPss4Fp0gHikgfWMyWUJFJUdHVATYo5J3DDLvlZp6eBkmE_ynAYZTiOUgMfjt3LOIN9xv-tUIFPB6AGh4e4pFBf_V_bX1n1mes</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Haixia, Xu</creator><creator>Peng, Ziyue</creator><creator>Jiezhao, Lin</creator><creator>Huiling, Gao</creator><creator>Xie, Changnan</creator><creator>Yihan, Wang</creator><creator>Yanglei, Jin</creator><creator>Li, Jianjun</creator><creator>Wang, Chengqiang</creator><creator>Wenning, Xu</creator><creator>Lixin, Zhu</creator><creator>Liu, Chun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7187-0482</orcidid></search><sort><creationdate>20240228</creationdate><title>3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments</title><author>Haixia, Xu ; Peng, Ziyue ; Jiezhao, Lin ; Huiling, Gao ; Xie, Changnan ; Yihan, Wang ; Yanglei, Jin ; Li, Jianjun ; Wang, Chengqiang ; Wenning, Xu ; Lixin, Zhu ; Liu, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-183d5289476b21574228b8d65418182c657d60c6165f6eb3966cecfb9fd339fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haixia, Xu</creatorcontrib><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Jiezhao, Lin</creatorcontrib><creatorcontrib>Huiling, Gao</creatorcontrib><creatorcontrib>Xie, Changnan</creatorcontrib><creatorcontrib>Yihan, Wang</creatorcontrib><creatorcontrib>Yanglei, Jin</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Wenning, Xu</creatorcontrib><creatorcontrib>Lixin, Zhu</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haixia, Xu</au><au>Peng, Ziyue</au><au>Jiezhao, Lin</au><au>Huiling, Gao</au><au>Xie, Changnan</au><au>Yihan, Wang</au><au>Yanglei, Jin</au><au>Li, Jianjun</au><au>Wang, Chengqiang</au><au>Wenning, Xu</au><au>Lixin, Zhu</au><au>Liu, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>16</volume><issue>8</issue><spage>9626</spage><epage>9639</epage><pages>9626-9639</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38372238</pmid><doi>10.1021/acsami.3c10807</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7187-0482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-02, Vol.16 (8), p.9626-9639
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2928586065
source ACS Publications
subjects Biological and Medical Applications of Materials and Interfaces
title 3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-Printed%20Magnesium%20Peroxide-Incorporated%20Scaffolds%20with%20Sustained%20Oxygen%20Release%20and%20Enhanced%20Photothermal%20Performance%20for%20Osteosarcoma%20Multimodal%20Treatments&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Haixia,%20Xu&rft.date=2024-02-28&rft.volume=16&rft.issue=8&rft.spage=9626&rft.epage=9639&rft.pages=9626-9639&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c10807&rft_dat=%3Cproquest_cross%3E2928586065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928586065&rft_id=info:pmid/38372238&rfr_iscdi=true