3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments
The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-02, Vol.16 (8), p.9626-9639 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9639 |
---|---|
container_issue | 8 |
container_start_page | 9626 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Haixia, Xu Peng, Ziyue Jiezhao, Lin Huiling, Gao Xie, Changnan Yihan, Wang Yanglei, Jin Li, Jianjun Wang, Chengqiang Wenning, Xu Lixin, Zhu Liu, Chun |
description | The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment. |
doi_str_mv | 10.1021/acsami.3c10807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928586065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928586065</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-183d5289476b21574228b8d65418182c657d60c6165f6eb3966cecfb9fd339fb3</originalsourceid><addsrcrecordid>eNp1kU9v1DAUxC0EoqVw5Yh8REhZ_Cd2nCNqC1RqtStazpFjP3ddJfZiO6L9NHxVvNqlN05vpPnNSE-D0HtKVpQw-lmbrGe_4oYSRboX6JT2bdsoJtjLZ922J-hNzg-ESM6IeI1OuOIdY1ydoj_8otkkHwpYfKPvA2S_zHgDKT56C81VMDHtYtJ7_9Zo5-JkM_7tyxbfLrloH6qxfny6h4B_wAQ6A9bB4suw1cFUb7ONJZYtpFlP-14Xq6oOrgKvc4GYdTJx1vhmmYqfo63cXQJdZgglv0WvnJ4yvDveM_Tz6-Xd-ffmev3t6vzLdaM5J6WhilvBVN92cmRUdC1jalRWipYqqpiRorOSGEmlcBJG3ktpwLixd5bz3o38DH089O5S_LVALsPss4Fp0gHikgfWMyWUJFJUdHVATYo5J3DDLvlZp6eBkmE_ynAYZTiOUgMfjt3LOIN9xv-tUIFPB6AGh4e4pFBf_V_bX1n1mes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928586065</pqid></control><display><type>article</type><title>3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments</title><source>ACS Publications</source><creator>Haixia, Xu ; Peng, Ziyue ; Jiezhao, Lin ; Huiling, Gao ; Xie, Changnan ; Yihan, Wang ; Yanglei, Jin ; Li, Jianjun ; Wang, Chengqiang ; Wenning, Xu ; Lixin, Zhu ; Liu, Chun</creator><creatorcontrib>Haixia, Xu ; Peng, Ziyue ; Jiezhao, Lin ; Huiling, Gao ; Xie, Changnan ; Yihan, Wang ; Yanglei, Jin ; Li, Jianjun ; Wang, Chengqiang ; Wenning, Xu ; Lixin, Zhu ; Liu, Chun</creatorcontrib><description>The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c10807</identifier><identifier>PMID: 38372238</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials & interfaces, 2024-02, Vol.16 (8), p.9626-9639</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-183d5289476b21574228b8d65418182c657d60c6165f6eb3966cecfb9fd339fb3</citedby><cites>FETCH-LOGICAL-a330t-183d5289476b21574228b8d65418182c657d60c6165f6eb3966cecfb9fd339fb3</cites><orcidid>0000-0001-7187-0482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c10807$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c10807$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38372238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haixia, Xu</creatorcontrib><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Jiezhao, Lin</creatorcontrib><creatorcontrib>Huiling, Gao</creatorcontrib><creatorcontrib>Xie, Changnan</creatorcontrib><creatorcontrib>Yihan, Wang</creatorcontrib><creatorcontrib>Yanglei, Jin</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Wenning, Xu</creatorcontrib><creatorcontrib>Lixin, Zhu</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><title>3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAUxC0EoqVw5Yh8REhZ_Cd2nCNqC1RqtStazpFjP3ddJfZiO6L9NHxVvNqlN05vpPnNSE-D0HtKVpQw-lmbrGe_4oYSRboX6JT2bdsoJtjLZ922J-hNzg-ESM6IeI1OuOIdY1ydoj_8otkkHwpYfKPvA2S_zHgDKT56C81VMDHtYtJ7_9Zo5-JkM_7tyxbfLrloH6qxfny6h4B_wAQ6A9bB4suw1cFUb7ONJZYtpFlP-14Xq6oOrgKvc4GYdTJx1vhmmYqfo63cXQJdZgglv0WvnJ4yvDveM_Tz6-Xd-ffmev3t6vzLdaM5J6WhilvBVN92cmRUdC1jalRWipYqqpiRorOSGEmlcBJG3ktpwLixd5bz3o38DH089O5S_LVALsPss4Fp0gHikgfWMyWUJFJUdHVATYo5J3DDLvlZp6eBkmE_ynAYZTiOUgMfjt3LOIN9xv-tUIFPB6AGh4e4pFBf_V_bX1n1mes</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Haixia, Xu</creator><creator>Peng, Ziyue</creator><creator>Jiezhao, Lin</creator><creator>Huiling, Gao</creator><creator>Xie, Changnan</creator><creator>Yihan, Wang</creator><creator>Yanglei, Jin</creator><creator>Li, Jianjun</creator><creator>Wang, Chengqiang</creator><creator>Wenning, Xu</creator><creator>Lixin, Zhu</creator><creator>Liu, Chun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7187-0482</orcidid></search><sort><creationdate>20240228</creationdate><title>3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments</title><author>Haixia, Xu ; Peng, Ziyue ; Jiezhao, Lin ; Huiling, Gao ; Xie, Changnan ; Yihan, Wang ; Yanglei, Jin ; Li, Jianjun ; Wang, Chengqiang ; Wenning, Xu ; Lixin, Zhu ; Liu, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-183d5289476b21574228b8d65418182c657d60c6165f6eb3966cecfb9fd339fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haixia, Xu</creatorcontrib><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Jiezhao, Lin</creatorcontrib><creatorcontrib>Huiling, Gao</creatorcontrib><creatorcontrib>Xie, Changnan</creatorcontrib><creatorcontrib>Yihan, Wang</creatorcontrib><creatorcontrib>Yanglei, Jin</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Wenning, Xu</creatorcontrib><creatorcontrib>Lixin, Zhu</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haixia, Xu</au><au>Peng, Ziyue</au><au>Jiezhao, Lin</au><au>Huiling, Gao</au><au>Xie, Changnan</au><au>Yihan, Wang</au><au>Yanglei, Jin</au><au>Li, Jianjun</au><au>Wang, Chengqiang</au><au>Wenning, Xu</au><au>Lixin, Zhu</au><au>Liu, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>16</volume><issue>8</issue><spage>9626</spage><epage>9639</epage><pages>9626-9639</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38372238</pmid><doi>10.1021/acsami.3c10807</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7187-0482</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-02, Vol.16 (8), p.9626-9639 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2928586065 |
source | ACS Publications |
subjects | Biological and Medical Applications of Materials and Interfaces |
title | 3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-Printed%20Magnesium%20Peroxide-Incorporated%20Scaffolds%20with%20Sustained%20Oxygen%20Release%20and%20Enhanced%20Photothermal%20Performance%20for%20Osteosarcoma%20Multimodal%20Treatments&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Haixia,%20Xu&rft.date=2024-02-28&rft.volume=16&rft.issue=8&rft.spage=9626&rft.epage=9639&rft.pages=9626-9639&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c10807&rft_dat=%3Cproquest_cross%3E2928586065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928586065&rft_id=info:pmid/38372238&rfr_iscdi=true |