Inherent D-A Architecture in Indoloquinoxalines with an Array of Substituents for Non-Volatile Memory Device Applications

Donor-acceptor (D-A)-based architecture has been the key to increase storage capability efficiency through the enhanced charge transportation in the fabricated device. We have designed and synthesized a series of functionalized indoloquinoxalines (IQ) for non-volatile organic memory devices. The inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2024-05, Vol.25 (9), p.e202400003-e202400003
Hauptverfasser: Swetha, Senthilkumar V, Gayathri, Ramesh, Ardra, Murali, Imran, Predhanekar Mohamed, Nagarajan, Samuthira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e202400003
container_issue 9
container_start_page e202400003
container_title Chemphyschem
container_volume 25
creator Swetha, Senthilkumar V
Gayathri, Ramesh
Ardra, Murali
Imran, Predhanekar Mohamed
Nagarajan, Samuthira
description Donor-acceptor (D-A)-based architecture has been the key to increase storage capability efficiency through the enhanced charge transportation in the fabricated device. We have designed and synthesized a series of functionalized indoloquinoxalines (IQ) for non-volatile organic memory devices. The investigation on UV-visible spectra reveals the absorption maxima of the compounds around 420 nm, attributed to the intramolecular charge transfer between indole and quinoxaline moiety. The irreversible anodic peak in the 1.0 to 1.5 V range indicates the indole moiety's oxidation ability. Besides, the cathodic peak in the range of -0.5 to -1.0 V, contributed to the stability of the reduced quinoxaline unit. All the compounds exhibited uniformly covered thin film in SEM analysis, potentially facilitating the seamless charge carrier migration between adjacent molecules. The methoxyphenyl substituted compound exhibited the binary write-once read-many (WORM) memory behavior with the lowest threshold voltage of -0.81 V. The molecular simulations displayed the efficient intramolecular charge transfer, providing the fabricated device's distinctive conductive states. Except for the tert-butylphenyl compound, which showed volatile dynamic random-access memory (DRAM) behavior, all the other compounds exhibited non-volatile WORM memory behavior, suggesting IQs potential as an intrinsic D-A molecule in organic memory devices on further structural refinement.
doi_str_mv 10.1002/cphc.202400003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928585905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051317899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-c68a773396be1cc23d8bd77059d9d4515dace66a645e73eabdf67b996fc2b5923</originalsourceid><addsrcrecordid>eNpdkbtv2zAQh4miQfNo144BgS5Z5PAhiuRoJGliII8hbVeBok4wA5lUSCqt__vSsJuhXI7AfffDHT6EvlKyoISwSzut7YIRVpPy-Ad0QmuuK9nU9OPhXzMujtFpSi-FUETST-iYKy6ZUPIEbVd-DRF8xtfVEi-jXbsMNs8RsPN45fswhtfZ-fDHjM5Dwr9dXmPjCxrNFocBP89dyi7PJSPhIUT8GHz1K4wmuxHwA2xC3OJreHMW8HKaRmdLJ_j0GR0NZkzw5VDP0M_vNz-u7qr7p9vV1fK-skyqXNlGGSk5100H1FrGe9X1UhKhe93XgoreWGga09QCJAfT9UMjO62bwbJOaMbP0MU-d4rlEki53bhkYRyNhzCnlmmmhBKaiIJ--w99CXP0ZbuWE0E5lUrrQi32lI0hpQhDO0W3MXHbUtLupLQ7Ke27lDJwfoiduw307_g_C_wvfVSJHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051317899</pqid></control><display><type>article</type><title>Inherent D-A Architecture in Indoloquinoxalines with an Array of Substituents for Non-Volatile Memory Device Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Swetha, Senthilkumar V ; Gayathri, Ramesh ; Ardra, Murali ; Imran, Predhanekar Mohamed ; Nagarajan, Samuthira</creator><creatorcontrib>Swetha, Senthilkumar V ; Gayathri, Ramesh ; Ardra, Murali ; Imran, Predhanekar Mohamed ; Nagarajan, Samuthira</creatorcontrib><description>Donor-acceptor (D-A)-based architecture has been the key to increase storage capability efficiency through the enhanced charge transportation in the fabricated device. We have designed and synthesized a series of functionalized indoloquinoxalines (IQ) for non-volatile organic memory devices. The investigation on UV-visible spectra reveals the absorption maxima of the compounds around 420 nm, attributed to the intramolecular charge transfer between indole and quinoxaline moiety. The irreversible anodic peak in the 1.0 to 1.5 V range indicates the indole moiety's oxidation ability. Besides, the cathodic peak in the range of -0.5 to -1.0 V, contributed to the stability of the reduced quinoxaline unit. All the compounds exhibited uniformly covered thin film in SEM analysis, potentially facilitating the seamless charge carrier migration between adjacent molecules. The methoxyphenyl substituted compound exhibited the binary write-once read-many (WORM) memory behavior with the lowest threshold voltage of -0.81 V. The molecular simulations displayed the efficient intramolecular charge transfer, providing the fabricated device's distinctive conductive states. Except for the tert-butylphenyl compound, which showed volatile dynamic random-access memory (DRAM) behavior, all the other compounds exhibited non-volatile WORM memory behavior, suggesting IQs potential as an intrinsic D-A molecule in organic memory devices on further structural refinement.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202400003</identifier><identifier>PMID: 38372587</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; Charge transport ; Current carriers ; Data storage ; Dynamic random access memory ; Memory devices ; Oxidation ; Quinoxalines ; Thin films ; Threshold voltage</subject><ispartof>Chemphyschem, 2024-05, Vol.25 (9), p.e202400003-e202400003</ispartof><rights>2024 Wiley-VCH GmbH.</rights><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-c68a773396be1cc23d8bd77059d9d4515dace66a645e73eabdf67b996fc2b5923</cites><orcidid>0009-0008-4272-6164 ; 0000-0001-6959-7747 ; 0009-0004-7090-4301 ; 0000-0003-4558-3150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38372587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swetha, Senthilkumar V</creatorcontrib><creatorcontrib>Gayathri, Ramesh</creatorcontrib><creatorcontrib>Ardra, Murali</creatorcontrib><creatorcontrib>Imran, Predhanekar Mohamed</creatorcontrib><creatorcontrib>Nagarajan, Samuthira</creatorcontrib><title>Inherent D-A Architecture in Indoloquinoxalines with an Array of Substituents for Non-Volatile Memory Device Applications</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Donor-acceptor (D-A)-based architecture has been the key to increase storage capability efficiency through the enhanced charge transportation in the fabricated device. We have designed and synthesized a series of functionalized indoloquinoxalines (IQ) for non-volatile organic memory devices. The investigation on UV-visible spectra reveals the absorption maxima of the compounds around 420 nm, attributed to the intramolecular charge transfer between indole and quinoxaline moiety. The irreversible anodic peak in the 1.0 to 1.5 V range indicates the indole moiety's oxidation ability. Besides, the cathodic peak in the range of -0.5 to -1.0 V, contributed to the stability of the reduced quinoxaline unit. All the compounds exhibited uniformly covered thin film in SEM analysis, potentially facilitating the seamless charge carrier migration between adjacent molecules. The methoxyphenyl substituted compound exhibited the binary write-once read-many (WORM) memory behavior with the lowest threshold voltage of -0.81 V. The molecular simulations displayed the efficient intramolecular charge transfer, providing the fabricated device's distinctive conductive states. Except for the tert-butylphenyl compound, which showed volatile dynamic random-access memory (DRAM) behavior, all the other compounds exhibited non-volatile WORM memory behavior, suggesting IQs potential as an intrinsic D-A molecule in organic memory devices on further structural refinement.</description><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Current carriers</subject><subject>Data storage</subject><subject>Dynamic random access memory</subject><subject>Memory devices</subject><subject>Oxidation</subject><subject>Quinoxalines</subject><subject>Thin films</subject><subject>Threshold voltage</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkbtv2zAQh4miQfNo144BgS5Z5PAhiuRoJGliII8hbVeBok4wA5lUSCqt__vSsJuhXI7AfffDHT6EvlKyoISwSzut7YIRVpPy-Ad0QmuuK9nU9OPhXzMujtFpSi-FUETST-iYKy6ZUPIEbVd-DRF8xtfVEi-jXbsMNs8RsPN45fswhtfZ-fDHjM5Dwr9dXmPjCxrNFocBP89dyi7PJSPhIUT8GHz1K4wmuxHwA2xC3OJreHMW8HKaRmdLJ_j0GR0NZkzw5VDP0M_vNz-u7qr7p9vV1fK-skyqXNlGGSk5100H1FrGe9X1UhKhe93XgoreWGga09QCJAfT9UMjO62bwbJOaMbP0MU-d4rlEki53bhkYRyNhzCnlmmmhBKaiIJ--w99CXP0ZbuWE0E5lUrrQi32lI0hpQhDO0W3MXHbUtLupLQ7Ke27lDJwfoiduw307_g_C_wvfVSJHQ</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Swetha, Senthilkumar V</creator><creator>Gayathri, Ramesh</creator><creator>Ardra, Murali</creator><creator>Imran, Predhanekar Mohamed</creator><creator>Nagarajan, Samuthira</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-4272-6164</orcidid><orcidid>https://orcid.org/0000-0001-6959-7747</orcidid><orcidid>https://orcid.org/0009-0004-7090-4301</orcidid><orcidid>https://orcid.org/0000-0003-4558-3150</orcidid></search><sort><creationdate>20240502</creationdate><title>Inherent D-A Architecture in Indoloquinoxalines with an Array of Substituents for Non-Volatile Memory Device Applications</title><author>Swetha, Senthilkumar V ; Gayathri, Ramesh ; Ardra, Murali ; Imran, Predhanekar Mohamed ; Nagarajan, Samuthira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-c68a773396be1cc23d8bd77059d9d4515dace66a645e73eabdf67b996fc2b5923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Current carriers</topic><topic>Data storage</topic><topic>Dynamic random access memory</topic><topic>Memory devices</topic><topic>Oxidation</topic><topic>Quinoxalines</topic><topic>Thin films</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swetha, Senthilkumar V</creatorcontrib><creatorcontrib>Gayathri, Ramesh</creatorcontrib><creatorcontrib>Ardra, Murali</creatorcontrib><creatorcontrib>Imran, Predhanekar Mohamed</creatorcontrib><creatorcontrib>Nagarajan, Samuthira</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swetha, Senthilkumar V</au><au>Gayathri, Ramesh</au><au>Ardra, Murali</au><au>Imran, Predhanekar Mohamed</au><au>Nagarajan, Samuthira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inherent D-A Architecture in Indoloquinoxalines with an Array of Substituents for Non-Volatile Memory Device Applications</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>25</volume><issue>9</issue><spage>e202400003</spage><epage>e202400003</epage><pages>e202400003-e202400003</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Donor-acceptor (D-A)-based architecture has been the key to increase storage capability efficiency through the enhanced charge transportation in the fabricated device. We have designed and synthesized a series of functionalized indoloquinoxalines (IQ) for non-volatile organic memory devices. The investigation on UV-visible spectra reveals the absorption maxima of the compounds around 420 nm, attributed to the intramolecular charge transfer between indole and quinoxaline moiety. The irreversible anodic peak in the 1.0 to 1.5 V range indicates the indole moiety's oxidation ability. Besides, the cathodic peak in the range of -0.5 to -1.0 V, contributed to the stability of the reduced quinoxaline unit. All the compounds exhibited uniformly covered thin film in SEM analysis, potentially facilitating the seamless charge carrier migration between adjacent molecules. The methoxyphenyl substituted compound exhibited the binary write-once read-many (WORM) memory behavior with the lowest threshold voltage of -0.81 V. The molecular simulations displayed the efficient intramolecular charge transfer, providing the fabricated device's distinctive conductive states. Except for the tert-butylphenyl compound, which showed volatile dynamic random-access memory (DRAM) behavior, all the other compounds exhibited non-volatile WORM memory behavior, suggesting IQs potential as an intrinsic D-A molecule in organic memory devices on further structural refinement.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38372587</pmid><doi>10.1002/cphc.202400003</doi><orcidid>https://orcid.org/0009-0008-4272-6164</orcidid><orcidid>https://orcid.org/0000-0001-6959-7747</orcidid><orcidid>https://orcid.org/0009-0004-7090-4301</orcidid><orcidid>https://orcid.org/0000-0003-4558-3150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2024-05, Vol.25 (9), p.e202400003-e202400003
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_2928585905
source Wiley Online Library Journals Frontfile Complete
subjects Charge transfer
Charge transport
Current carriers
Data storage
Dynamic random access memory
Memory devices
Oxidation
Quinoxalines
Thin films
Threshold voltage
title Inherent D-A Architecture in Indoloquinoxalines with an Array of Substituents for Non-Volatile Memory Device Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inherent%20D-A%20Architecture%20in%20Indoloquinoxalines%20with%20an%20Array%20of%20Substituents%20for%20Non-Volatile%20Memory%20Device%20Applications&rft.jtitle=Chemphyschem&rft.au=Swetha,%20Senthilkumar%20V&rft.date=2024-05-02&rft.volume=25&rft.issue=9&rft.spage=e202400003&rft.epage=e202400003&rft.pages=e202400003-e202400003&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202400003&rft_dat=%3Cproquest_cross%3E3051317899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051317899&rft_id=info:pmid/38372587&rfr_iscdi=true