Revealing the Distribution of Lithium Compounds in Lithium Dendrites by Four-Dimensional Electron Microscopy Analysis
Characterizing the microstructure of radiation- and chemical-sensitive lithium dendrites and its solid electrolyte interphase (SEI) is an important task when investigating the performance and reliability of lithium-ion batteries. Widely used methods, such as cryogenic high-resolution transmission el...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-02, Vol.24 (8), p.2537-2543 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Characterizing the microstructure of radiation- and chemical-sensitive lithium dendrites and its solid electrolyte interphase (SEI) is an important task when investigating the performance and reliability of lithium-ion batteries. Widely used methods, such as cryogenic high-resolution transmission electron microscopy as well as related spectroscopy, are able to reveal the local structure at nanometer and atomic scale; however, these methods are unable to show the distribution of various crystal phases along the dendrite in a large field of view. In this work, two types of four-dimensional electron microscopy diffractive imaging methods, i.e., scanning electron nanodiffraction (SEND) and scanning convergent beam electron diffraction (SCBED), are employed to show a new pathway on characterizing the sensitive lithium dendrite samples at room temperature and in a large field of view. Combining with the non-negative matrix factorization (NMF) algorithm, orientations of different lithium metal grains along the lithium dendrite as well as different lithium compounds in the SEI layer are clearly identified. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.3c04537 |