Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach
Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-07, Vol.20 (30), p.e2309500-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | e2309500 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | He, Chengli Chen, Yang Hao, Zixiang Wang, Linrui Wang, Mingyan Cui, Xiaoli |
description | Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6‐fold higher than the TMO‐free process. The theoretical calculations show that N2 molecules prefer to side‐on chemisorb on the mechano‐induced bridge‐oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative‐way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost‐effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect‐engineering‐induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation.
This work not only first reports on the mechanocatalytic performance and mechanism of TiO2(101) surface for efficient mechanochemical ammonia synthesis by using N2 and H2O as reactants, but also highlights the criterion for selecting specific mechanocatalysts by evaluating the ability of N2 chemisorption and activation and H2O dissociation on the surface of mechanocatalysts. |
doi_str_mv | 10.1002/smll.202309500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928251376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084269899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3280-fe12408caa5179127c366da36cb8174a22cd0eb6bbfcdd7918b2cf4eca0caec33</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEotctS2SJDZsZfJlJHHZDaaHSVEXqZWudOCczrmI7tRM62fUReAoejCfB1ZRBYsPKXnzn-8_Rn2VvGJ0ySvmHaNt2yikXtJxT-iLbZzkTk1zy8uXuz-hedhDjHaWC8VnxOtsTUiQkn-9nPy9Qr8F5DT20Y280uRpdv8ZoIvENWVjrnQFSjeTa9ODMYMln4zemRvJg-jX5FEy9wl-PPy434woduQUNThuMH8m5-46xNyvojVuRbY6JljTBW5IiyOmmw2AsuhRNwNXkzITYJ9e3YJKja5Esui540Ouj7FUDbcTj5_cwuzk7vT75Ollefjk_WSwnWnBJJw2mA6nUAHNWlIwXWuR5DSLXlWTFDDjXNcUqr6pG13UiZMV1M0MNVANqIQ6z91tvir0f0vrKmqixbcGhH6LiJZd8zkSRJ_TdP-idH4JL2ylB5YznpSzLRE23lA4-xoCN6tLJEEbFqHpqUD01qHYNpoG3z9qhsljv8D-VJaDcAg-mxfE_OnV1sVz-lf8Gh-SuDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084269899</pqid></control><display><type>article</type><title>Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach</title><source>Wiley Online Library</source><creator>He, Chengli ; Chen, Yang ; Hao, Zixiang ; Wang, Linrui ; Wang, Mingyan ; Cui, Xiaoli</creator><creatorcontrib>He, Chengli ; Chen, Yang ; Hao, Zixiang ; Wang, Linrui ; Wang, Mingyan ; Cui, Xiaoli</creatorcontrib><description>Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6‐fold higher than the TMO‐free process. The theoretical calculations show that N2 molecules prefer to side‐on chemisorb on the mechano‐induced bridge‐oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative‐way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost‐effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect‐engineering‐induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation.
This work not only first reports on the mechanocatalytic performance and mechanism of TiO2(101) surface for efficient mechanochemical ammonia synthesis by using N2 and H2O as reactants, but also highlights the criterion for selecting specific mechanocatalysts by evaluating the ability of N2 chemisorption and activation and H2O dissociation on the surface of mechanocatalysts.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202309500</identifier><identifier>PMID: 38368265</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Ammonia synthesis ; Carbon dioxide ; Catalysts ; Chemical synthesis ; Copper ; Crystal defects ; Energy of dissociation ; H2O dissociation ; Hydrogen ; Hydrogen production ; Lattice vacancies ; Liquid phases ; mechanochemistry ; N2 adsorption ; Niobium oxides ; Nitrogenation ; Oxygen ; TiO2 ; Titanium ; Titanium dioxide ; Transition metal oxides ; Zinc oxide ; Zinc oxides</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-07, Vol.20 (30), p.e2309500-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3280-fe12408caa5179127c366da36cb8174a22cd0eb6bbfcdd7918b2cf4eca0caec33</cites><orcidid>0000-0001-6005-7680 ; 0000-0003-0108-8342 ; 0000-0001-9958-4517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202309500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202309500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38368265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Chengli</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Hao, Zixiang</creatorcontrib><creatorcontrib>Wang, Linrui</creatorcontrib><creatorcontrib>Wang, Mingyan</creatorcontrib><creatorcontrib>Cui, Xiaoli</creatorcontrib><title>Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6‐fold higher than the TMO‐free process. The theoretical calculations show that N2 molecules prefer to side‐on chemisorb on the mechano‐induced bridge‐oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative‐way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost‐effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect‐engineering‐induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation.
This work not only first reports on the mechanocatalytic performance and mechanism of TiO2(101) surface for efficient mechanochemical ammonia synthesis by using N2 and H2O as reactants, but also highlights the criterion for selecting specific mechanocatalysts by evaluating the ability of N2 chemisorption and activation and H2O dissociation on the surface of mechanocatalysts.</description><subject>Ammonia</subject><subject>Ammonia synthesis</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Energy of dissociation</subject><subject>H2O dissociation</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Lattice vacancies</subject><subject>Liquid phases</subject><subject>mechanochemistry</subject><subject>N2 adsorption</subject><subject>Niobium oxides</subject><subject>Nitrogenation</subject><subject>Oxygen</subject><subject>TiO2</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transition metal oxides</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhiMEotctS2SJDZsZfJlJHHZDaaHSVEXqZWudOCczrmI7tRM62fUReAoejCfB1ZRBYsPKXnzn-8_Rn2VvGJ0ySvmHaNt2yikXtJxT-iLbZzkTk1zy8uXuz-hedhDjHaWC8VnxOtsTUiQkn-9nPy9Qr8F5DT20Y280uRpdv8ZoIvENWVjrnQFSjeTa9ODMYMln4zemRvJg-jX5FEy9wl-PPy434woduQUNThuMH8m5-46xNyvojVuRbY6JljTBW5IiyOmmw2AsuhRNwNXkzITYJ9e3YJKja5Esui540Ouj7FUDbcTj5_cwuzk7vT75Ollefjk_WSwnWnBJJw2mA6nUAHNWlIwXWuR5DSLXlWTFDDjXNcUqr6pG13UiZMV1M0MNVANqIQ6z91tvir0f0vrKmqixbcGhH6LiJZd8zkSRJ_TdP-idH4JL2ylB5YznpSzLRE23lA4-xoCN6tLJEEbFqHpqUD01qHYNpoG3z9qhsljv8D-VJaDcAg-mxfE_OnV1sVz-lf8Gh-SuDQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>He, Chengli</creator><creator>Chen, Yang</creator><creator>Hao, Zixiang</creator><creator>Wang, Linrui</creator><creator>Wang, Mingyan</creator><creator>Cui, Xiaoli</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6005-7680</orcidid><orcidid>https://orcid.org/0000-0003-0108-8342</orcidid><orcidid>https://orcid.org/0000-0001-9958-4517</orcidid></search><sort><creationdate>20240701</creationdate><title>Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach</title><author>He, Chengli ; Chen, Yang ; Hao, Zixiang ; Wang, Linrui ; Wang, Mingyan ; Cui, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3280-fe12408caa5179127c366da36cb8174a22cd0eb6bbfcdd7918b2cf4eca0caec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Ammonia synthesis</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Energy of dissociation</topic><topic>H2O dissociation</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Lattice vacancies</topic><topic>Liquid phases</topic><topic>mechanochemistry</topic><topic>N2 adsorption</topic><topic>Niobium oxides</topic><topic>Nitrogenation</topic><topic>Oxygen</topic><topic>TiO2</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transition metal oxides</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Chengli</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Hao, Zixiang</creatorcontrib><creatorcontrib>Wang, Linrui</creatorcontrib><creatorcontrib>Wang, Mingyan</creatorcontrib><creatorcontrib>Cui, Xiaoli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Chengli</au><au>Chen, Yang</au><au>Hao, Zixiang</au><au>Wang, Linrui</au><au>Wang, Mingyan</au><au>Cui, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>20</volume><issue>30</issue><spage>e2309500</spage><epage>n/a</epage><pages>e2309500-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6‐fold higher than the TMO‐free process. The theoretical calculations show that N2 molecules prefer to side‐on chemisorb on the mechano‐induced bridge‐oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative‐way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost‐effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect‐engineering‐induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation.
This work not only first reports on the mechanocatalytic performance and mechanism of TiO2(101) surface for efficient mechanochemical ammonia synthesis by using N2 and H2O as reactants, but also highlights the criterion for selecting specific mechanocatalysts by evaluating the ability of N2 chemisorption and activation and H2O dissociation on the surface of mechanocatalysts.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38368265</pmid><doi>10.1002/smll.202309500</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6005-7680</orcidid><orcidid>https://orcid.org/0000-0003-0108-8342</orcidid><orcidid>https://orcid.org/0000-0001-9958-4517</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-07, Vol.20 (30), p.e2309500-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2928251376 |
source | Wiley Online Library |
subjects | Ammonia Ammonia synthesis Carbon dioxide Catalysts Chemical synthesis Copper Crystal defects Energy of dissociation H2O dissociation Hydrogen Hydrogen production Lattice vacancies Liquid phases mechanochemistry N2 adsorption Niobium oxides Nitrogenation Oxygen TiO2 Titanium Titanium dioxide Transition metal oxides Zinc oxide Zinc oxides |
title | Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanocatalytic%20Synthesis%20of%20Ammonia%20by%20Titanium%20Dioxide%20with%20Bridge%E2%80%90Oxygen%20Vacancies:%20Investigating%20Mechanism%20from%20the%20Experimental%20and%20First%E2%80%90Principle%20Approach&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=He,%20Chengli&rft.date=2024-07-01&rft.volume=20&rft.issue=30&rft.spage=e2309500&rft.epage=n/a&rft.pages=e2309500-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202309500&rft_dat=%3Cproquest_cross%3E3084269899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084269899&rft_id=info:pmid/38368265&rfr_iscdi=true |