Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach

Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-07, Vol.20 (30), p.e2309500-n/a
Hauptverfasser: He, Chengli, Chen, Yang, Hao, Zixiang, Wang, Linrui, Wang, Mingyan, Cui, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page e2309500
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator He, Chengli
Chen, Yang
Hao, Zixiang
Wang, Linrui
Wang, Mingyan
Cui, Xiaoli
description Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6‐fold higher than the TMO‐free process. The theoretical calculations show that N2 molecules prefer to side‐on chemisorb on the mechano‐induced bridge‐oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative‐way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost‐effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect‐engineering‐induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation. This work not only first reports on the mechanocatalytic performance and mechanism of TiO2(101) surface for efficient mechanochemical ammonia synthesis by using N2 and H2O as reactants, but also highlights the criterion for selecting specific mechanocatalysts by evaluating the ability of N2 chemisorption and activation and H2O dissociation on the surface of mechanocatalysts.
doi_str_mv 10.1002/smll.202309500
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928251376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084269899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3280-fe12408caa5179127c366da36cb8174a22cd0eb6bbfcdd7918b2cf4eca0caec33</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEotctS2SJDZsZfJlJHHZDaaHSVEXqZWudOCczrmI7tRM62fUReAoejCfB1ZRBYsPKXnzn-8_Rn2VvGJ0ySvmHaNt2yikXtJxT-iLbZzkTk1zy8uXuz-hedhDjHaWC8VnxOtsTUiQkn-9nPy9Qr8F5DT20Y280uRpdv8ZoIvENWVjrnQFSjeTa9ODMYMln4zemRvJg-jX5FEy9wl-PPy434woduQUNThuMH8m5-46xNyvojVuRbY6JljTBW5IiyOmmw2AsuhRNwNXkzITYJ9e3YJKja5Esui540Ouj7FUDbcTj5_cwuzk7vT75Ollefjk_WSwnWnBJJw2mA6nUAHNWlIwXWuR5DSLXlWTFDDjXNcUqr6pG13UiZMV1M0MNVANqIQ6z91tvir0f0vrKmqixbcGhH6LiJZd8zkSRJ_TdP-idH4JL2ylB5YznpSzLRE23lA4-xoCN6tLJEEbFqHpqUD01qHYNpoG3z9qhsljv8D-VJaDcAg-mxfE_OnV1sVz-lf8Gh-SuDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084269899</pqid></control><display><type>article</type><title>Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach</title><source>Wiley Online Library</source><creator>He, Chengli ; Chen, Yang ; Hao, Zixiang ; Wang, Linrui ; Wang, Mingyan ; Cui, Xiaoli</creator><creatorcontrib>He, Chengli ; Chen, Yang ; Hao, Zixiang ; Wang, Linrui ; Wang, Mingyan ; Cui, Xiaoli</creatorcontrib><description>Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6‐fold higher than the TMO‐free process. The theoretical calculations show that N2 molecules prefer to side‐on chemisorb on the mechano‐induced bridge‐oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative‐way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost‐effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect‐engineering‐induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation. This work not only first reports on the mechanocatalytic performance and mechanism of TiO2(101) surface for efficient mechanochemical ammonia synthesis by using N2 and H2O as reactants, but also highlights the criterion for selecting specific mechanocatalysts by evaluating the ability of N2 chemisorption and activation and H2O dissociation on the surface of mechanocatalysts.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202309500</identifier><identifier>PMID: 38368265</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Ammonia synthesis ; Carbon dioxide ; Catalysts ; Chemical synthesis ; Copper ; Crystal defects ; Energy of dissociation ; H2O dissociation ; Hydrogen ; Hydrogen production ; Lattice vacancies ; Liquid phases ; mechanochemistry ; N2 adsorption ; Niobium oxides ; Nitrogenation ; Oxygen ; TiO2 ; Titanium ; Titanium dioxide ; Transition metal oxides ; Zinc oxide ; Zinc oxides</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-07, Vol.20 (30), p.e2309500-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3280-fe12408caa5179127c366da36cb8174a22cd0eb6bbfcdd7918b2cf4eca0caec33</cites><orcidid>0000-0001-6005-7680 ; 0000-0003-0108-8342 ; 0000-0001-9958-4517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202309500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202309500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38368265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Chengli</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Hao, Zixiang</creatorcontrib><creatorcontrib>Wang, Linrui</creatorcontrib><creatorcontrib>Wang, Mingyan</creatorcontrib><creatorcontrib>Cui, Xiaoli</creatorcontrib><title>Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6‐fold higher than the TMO‐free process. The theoretical calculations show that N2 molecules prefer to side‐on chemisorb on the mechano‐induced bridge‐oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative‐way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost‐effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect‐engineering‐induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation. This work not only first reports on the mechanocatalytic performance and mechanism of TiO2(101) surface for efficient mechanochemical ammonia synthesis by using N2 and H2O as reactants, but also highlights the criterion for selecting specific mechanocatalysts by evaluating the ability of N2 chemisorption and activation and H2O dissociation on the surface of mechanocatalysts.</description><subject>Ammonia</subject><subject>Ammonia synthesis</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Energy of dissociation</subject><subject>H2O dissociation</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Lattice vacancies</subject><subject>Liquid phases</subject><subject>mechanochemistry</subject><subject>N2 adsorption</subject><subject>Niobium oxides</subject><subject>Nitrogenation</subject><subject>Oxygen</subject><subject>TiO2</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transition metal oxides</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhiMEotctS2SJDZsZfJlJHHZDaaHSVEXqZWudOCczrmI7tRM62fUReAoejCfB1ZRBYsPKXnzn-8_Rn2VvGJ0ySvmHaNt2yikXtJxT-iLbZzkTk1zy8uXuz-hedhDjHaWC8VnxOtsTUiQkn-9nPy9Qr8F5DT20Y280uRpdv8ZoIvENWVjrnQFSjeTa9ODMYMln4zemRvJg-jX5FEy9wl-PPy434woduQUNThuMH8m5-46xNyvojVuRbY6JljTBW5IiyOmmw2AsuhRNwNXkzITYJ9e3YJKja5Esui540Ouj7FUDbcTj5_cwuzk7vT75Ollefjk_WSwnWnBJJw2mA6nUAHNWlIwXWuR5DSLXlWTFDDjXNcUqr6pG13UiZMV1M0MNVANqIQ6z91tvir0f0vrKmqixbcGhH6LiJZd8zkSRJ_TdP-idH4JL2ylB5YznpSzLRE23lA4-xoCN6tLJEEbFqHpqUD01qHYNpoG3z9qhsljv8D-VJaDcAg-mxfE_OnV1sVz-lf8Gh-SuDQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>He, Chengli</creator><creator>Chen, Yang</creator><creator>Hao, Zixiang</creator><creator>Wang, Linrui</creator><creator>Wang, Mingyan</creator><creator>Cui, Xiaoli</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6005-7680</orcidid><orcidid>https://orcid.org/0000-0003-0108-8342</orcidid><orcidid>https://orcid.org/0000-0001-9958-4517</orcidid></search><sort><creationdate>20240701</creationdate><title>Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach</title><author>He, Chengli ; Chen, Yang ; Hao, Zixiang ; Wang, Linrui ; Wang, Mingyan ; Cui, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3280-fe12408caa5179127c366da36cb8174a22cd0eb6bbfcdd7918b2cf4eca0caec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Ammonia synthesis</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Energy of dissociation</topic><topic>H2O dissociation</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Lattice vacancies</topic><topic>Liquid phases</topic><topic>mechanochemistry</topic><topic>N2 adsorption</topic><topic>Niobium oxides</topic><topic>Nitrogenation</topic><topic>Oxygen</topic><topic>TiO2</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transition metal oxides</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Chengli</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Hao, Zixiang</creatorcontrib><creatorcontrib>Wang, Linrui</creatorcontrib><creatorcontrib>Wang, Mingyan</creatorcontrib><creatorcontrib>Cui, Xiaoli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Chengli</au><au>Chen, Yang</au><au>Hao, Zixiang</au><au>Wang, Linrui</au><au>Wang, Mingyan</au><au>Cui, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>20</volume><issue>30</issue><spage>e2309500</spage><epage>n/a</epage><pages>e2309500-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas‐liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6‐fold higher than the TMO‐free process. The theoretical calculations show that N2 molecules prefer to side‐on chemisorb on the mechano‐induced bridge‐oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative‐way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost‐effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect‐engineering‐induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation. This work not only first reports on the mechanocatalytic performance and mechanism of TiO2(101) surface for efficient mechanochemical ammonia synthesis by using N2 and H2O as reactants, but also highlights the criterion for selecting specific mechanocatalysts by evaluating the ability of N2 chemisorption and activation and H2O dissociation on the surface of mechanocatalysts.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38368265</pmid><doi>10.1002/smll.202309500</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6005-7680</orcidid><orcidid>https://orcid.org/0000-0003-0108-8342</orcidid><orcidid>https://orcid.org/0000-0001-9958-4517</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-07, Vol.20 (30), p.e2309500-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2928251376
source Wiley Online Library
subjects Ammonia
Ammonia synthesis
Carbon dioxide
Catalysts
Chemical synthesis
Copper
Crystal defects
Energy of dissociation
H2O dissociation
Hydrogen
Hydrogen production
Lattice vacancies
Liquid phases
mechanochemistry
N2 adsorption
Niobium oxides
Nitrogenation
Oxygen
TiO2
Titanium
Titanium dioxide
Transition metal oxides
Zinc oxide
Zinc oxides
title Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge‐Oxygen Vacancies: Investigating Mechanism from the Experimental and First‐Principle Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanocatalytic%20Synthesis%20of%20Ammonia%20by%20Titanium%20Dioxide%20with%20Bridge%E2%80%90Oxygen%20Vacancies:%20Investigating%20Mechanism%20from%20the%20Experimental%20and%20First%E2%80%90Principle%20Approach&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=He,%20Chengli&rft.date=2024-07-01&rft.volume=20&rft.issue=30&rft.spage=e2309500&rft.epage=n/a&rft.pages=e2309500-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202309500&rft_dat=%3Cproquest_cross%3E3084269899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084269899&rft_id=info:pmid/38368265&rfr_iscdi=true