Cellulose/GO monolith covered with Pd–Pt bimetallic nanocrystals for continuous-flow catalytic reduction of hexavalent chromium

Cellulose monolith materials have interconnected open porous structures with very high porosity, making them attractive structures for use as support materials in heterogeneous catalysis applications. In this study, we developed a highly efficient and reusable continuous-flow reactor for Cr(VI) reme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2024-04, Vol.330, p.121837-121837, Article 121837
Hauptverfasser: Pradyasti, Astrini, Kim, Hyeon Jin, Hyun, Woo Jin, Kim, Mun Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121837
container_issue
container_start_page 121837
container_title Carbohydrate polymers
container_volume 330
creator Pradyasti, Astrini
Kim, Hyeon Jin
Hyun, Woo Jin
Kim, Mun Ho
description Cellulose monolith materials have interconnected open porous structures with very high porosity, making them attractive structures for use as support materials in heterogeneous catalysis applications. In this study, we developed a highly efficient and reusable continuous-flow reactor for Cr(VI) remediation by combining the advantageous features of cellulose monoliths with suitable reinforcement techniques. We fabricated a porous monolithic cellulose/graphene oxide (GO) composite with a continuous three-dimensional skeletal framework using the thermally induced phase separation technique. Pd nanocrystals were synthesized in situ on the surface of the composite monolith, and then converted to porous Pd–Pt bimetallic nanocrystals through a galvanic replacement reaction. This approach eliminated the need for additional reductants and stabilizers, making the process simpler and more environmentally friendly. Under carefully optimized conditions, the cellulose/GO/Pd–Pt nanocomposite monolith exhibited outstanding performance in continuous-flow reactions for Cr(VI) reduction, achieving a maximum conversion rate of 98 %. Moreover, the nanocomposite monolith-based heterogeneous catalyst exhibited remarkable long-term stability, maintaining its catalytic activity even after extended periods of storage in the dried state. These findings highlight the potential of cellulose-based composite monoliths as versatile and robust support materials for heterogeneous catalysis. [Display omitted]
doi_str_mv 10.1016/j.carbpol.2024.121837
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928251136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861724000638</els_id><sourcerecordid>2928251136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-f6c7f50cd56794c88209d91c42bee06c6b4b461ff5a6b034c8bc43276354569b3</originalsourceid><addsrcrecordid>eNqFkcFu3CAQhlHVqNkmfYRWHHvxBgzG-FRVqzatFCk5JGdkjwctK9tsAW-yt_YZ8oZ5krLaba_hABrx_f8M_IR85GzJGVdXmyW0odv6YVmyUi55ybWo35AF13VTcCHlW7JgXMpCK16fk_cxblheirN35FxooTTnckH-rHAY5sFHvLq-paOf_ODSmoLfYcCePh6Ku_7l9_Ndop0bMbXD4IBO7eQh7GMuI7U-ZMGU3DT7ORZ28I8U2ny1TxnNNjMk5yfqLV3jU7trB5wShXXwo5vHS3Jmswt-OJ0X5OH7t_vVj-Lm9vrn6utNAaLRqbAKalsx6CtVNxK0LlnTNxxk2SEyBaqTnVTc2qpVHROZ6ECKslaikpVqOnFBPh99t8H_mjEmM7oI-fXthHlsI3glap33-lW0bEpdVpwLldHqiELwMQa0Zhvc2Ia94cwcgjIbcwrKHIIyx6Cy7tOpxdyN2P9X_UsmA1-OAOY_2TkMJoLDCbB3ASGZ3rtXWvwFks-p-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928251136</pqid></control><display><type>article</type><title>Cellulose/GO monolith covered with Pd–Pt bimetallic nanocrystals for continuous-flow catalytic reduction of hexavalent chromium</title><source>Elsevier ScienceDirect Journals</source><creator>Pradyasti, Astrini ; Kim, Hyeon Jin ; Hyun, Woo Jin ; Kim, Mun Ho</creator><creatorcontrib>Pradyasti, Astrini ; Kim, Hyeon Jin ; Hyun, Woo Jin ; Kim, Mun Ho</creatorcontrib><description>Cellulose monolith materials have interconnected open porous structures with very high porosity, making them attractive structures for use as support materials in heterogeneous catalysis applications. In this study, we developed a highly efficient and reusable continuous-flow reactor for Cr(VI) remediation by combining the advantageous features of cellulose monoliths with suitable reinforcement techniques. We fabricated a porous monolithic cellulose/graphene oxide (GO) composite with a continuous three-dimensional skeletal framework using the thermally induced phase separation technique. Pd nanocrystals were synthesized in situ on the surface of the composite monolith, and then converted to porous Pd–Pt bimetallic nanocrystals through a galvanic replacement reaction. This approach eliminated the need for additional reductants and stabilizers, making the process simpler and more environmentally friendly. Under carefully optimized conditions, the cellulose/GO/Pd–Pt nanocomposite monolith exhibited outstanding performance in continuous-flow reactions for Cr(VI) reduction, achieving a maximum conversion rate of 98 %. Moreover, the nanocomposite monolith-based heterogeneous catalyst exhibited remarkable long-term stability, maintaining its catalytic activity even after extended periods of storage in the dried state. These findings highlight the potential of cellulose-based composite monoliths as versatile and robust support materials for heterogeneous catalysis. [Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.121837</identifier><identifier>PMID: 38368114</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>catalysts ; catalytic activity ; Cellulose ; chromium ; Composite monolith ; Continuous-flow reactor ; Cr(VI) remediation ; graphene oxide ; nanocomposites ; nanocrystals ; Pd–Pt bimetallic nanocrystal ; porosity ; reducing agents ; remediation ; separation</subject><ispartof>Carbohydrate polymers, 2024-04, Vol.330, p.121837-121837, Article 121837</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-f6c7f50cd56794c88209d91c42bee06c6b4b461ff5a6b034c8bc43276354569b3</citedby><cites>FETCH-LOGICAL-c398t-f6c7f50cd56794c88209d91c42bee06c6b4b461ff5a6b034c8bc43276354569b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861724000638$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38368114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradyasti, Astrini</creatorcontrib><creatorcontrib>Kim, Hyeon Jin</creatorcontrib><creatorcontrib>Hyun, Woo Jin</creatorcontrib><creatorcontrib>Kim, Mun Ho</creatorcontrib><title>Cellulose/GO monolith covered with Pd–Pt bimetallic nanocrystals for continuous-flow catalytic reduction of hexavalent chromium</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Cellulose monolith materials have interconnected open porous structures with very high porosity, making them attractive structures for use as support materials in heterogeneous catalysis applications. In this study, we developed a highly efficient and reusable continuous-flow reactor for Cr(VI) remediation by combining the advantageous features of cellulose monoliths with suitable reinforcement techniques. We fabricated a porous monolithic cellulose/graphene oxide (GO) composite with a continuous three-dimensional skeletal framework using the thermally induced phase separation technique. Pd nanocrystals were synthesized in situ on the surface of the composite monolith, and then converted to porous Pd–Pt bimetallic nanocrystals through a galvanic replacement reaction. This approach eliminated the need for additional reductants and stabilizers, making the process simpler and more environmentally friendly. Under carefully optimized conditions, the cellulose/GO/Pd–Pt nanocomposite monolith exhibited outstanding performance in continuous-flow reactions for Cr(VI) reduction, achieving a maximum conversion rate of 98 %. Moreover, the nanocomposite monolith-based heterogeneous catalyst exhibited remarkable long-term stability, maintaining its catalytic activity even after extended periods of storage in the dried state. These findings highlight the potential of cellulose-based composite monoliths as versatile and robust support materials for heterogeneous catalysis. [Display omitted]</description><subject>catalysts</subject><subject>catalytic activity</subject><subject>Cellulose</subject><subject>chromium</subject><subject>Composite monolith</subject><subject>Continuous-flow reactor</subject><subject>Cr(VI) remediation</subject><subject>graphene oxide</subject><subject>nanocomposites</subject><subject>nanocrystals</subject><subject>Pd–Pt bimetallic nanocrystal</subject><subject>porosity</subject><subject>reducing agents</subject><subject>remediation</subject><subject>separation</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAQhlHVqNkmfYRWHHvxBgzG-FRVqzatFCk5JGdkjwctK9tsAW-yt_YZ8oZ5krLaba_hABrx_f8M_IR85GzJGVdXmyW0odv6YVmyUi55ybWo35AF13VTcCHlW7JgXMpCK16fk_cxblheirN35FxooTTnckH-rHAY5sFHvLq-paOf_ODSmoLfYcCePh6Ku_7l9_Ndop0bMbXD4IBO7eQh7GMuI7U-ZMGU3DT7ORZ28I8U2ny1TxnNNjMk5yfqLV3jU7trB5wShXXwo5vHS3Jmswt-OJ0X5OH7t_vVj-Lm9vrn6utNAaLRqbAKalsx6CtVNxK0LlnTNxxk2SEyBaqTnVTc2qpVHROZ6ECKslaikpVqOnFBPh99t8H_mjEmM7oI-fXthHlsI3glap33-lW0bEpdVpwLldHqiELwMQa0Zhvc2Ia94cwcgjIbcwrKHIIyx6Cy7tOpxdyN2P9X_UsmA1-OAOY_2TkMJoLDCbB3ASGZ3rtXWvwFks-p-w</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Pradyasti, Astrini</creator><creator>Kim, Hyeon Jin</creator><creator>Hyun, Woo Jin</creator><creator>Kim, Mun Ho</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240415</creationdate><title>Cellulose/GO monolith covered with Pd–Pt bimetallic nanocrystals for continuous-flow catalytic reduction of hexavalent chromium</title><author>Pradyasti, Astrini ; Kim, Hyeon Jin ; Hyun, Woo Jin ; Kim, Mun Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-f6c7f50cd56794c88209d91c42bee06c6b4b461ff5a6b034c8bc43276354569b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>catalysts</topic><topic>catalytic activity</topic><topic>Cellulose</topic><topic>chromium</topic><topic>Composite monolith</topic><topic>Continuous-flow reactor</topic><topic>Cr(VI) remediation</topic><topic>graphene oxide</topic><topic>nanocomposites</topic><topic>nanocrystals</topic><topic>Pd–Pt bimetallic nanocrystal</topic><topic>porosity</topic><topic>reducing agents</topic><topic>remediation</topic><topic>separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradyasti, Astrini</creatorcontrib><creatorcontrib>Kim, Hyeon Jin</creatorcontrib><creatorcontrib>Hyun, Woo Jin</creatorcontrib><creatorcontrib>Kim, Mun Ho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradyasti, Astrini</au><au>Kim, Hyeon Jin</au><au>Hyun, Woo Jin</au><au>Kim, Mun Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulose/GO monolith covered with Pd–Pt bimetallic nanocrystals for continuous-flow catalytic reduction of hexavalent chromium</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2024-04-15</date><risdate>2024</risdate><volume>330</volume><spage>121837</spage><epage>121837</epage><pages>121837-121837</pages><artnum>121837</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>Cellulose monolith materials have interconnected open porous structures with very high porosity, making them attractive structures for use as support materials in heterogeneous catalysis applications. In this study, we developed a highly efficient and reusable continuous-flow reactor for Cr(VI) remediation by combining the advantageous features of cellulose monoliths with suitable reinforcement techniques. We fabricated a porous monolithic cellulose/graphene oxide (GO) composite with a continuous three-dimensional skeletal framework using the thermally induced phase separation technique. Pd nanocrystals were synthesized in situ on the surface of the composite monolith, and then converted to porous Pd–Pt bimetallic nanocrystals through a galvanic replacement reaction. This approach eliminated the need for additional reductants and stabilizers, making the process simpler and more environmentally friendly. Under carefully optimized conditions, the cellulose/GO/Pd–Pt nanocomposite monolith exhibited outstanding performance in continuous-flow reactions for Cr(VI) reduction, achieving a maximum conversion rate of 98 %. Moreover, the nanocomposite monolith-based heterogeneous catalyst exhibited remarkable long-term stability, maintaining its catalytic activity even after extended periods of storage in the dried state. These findings highlight the potential of cellulose-based composite monoliths as versatile and robust support materials for heterogeneous catalysis. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38368114</pmid><doi>10.1016/j.carbpol.2024.121837</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2024-04, Vol.330, p.121837-121837, Article 121837
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_2928251136
source Elsevier ScienceDirect Journals
subjects catalysts
catalytic activity
Cellulose
chromium
Composite monolith
Continuous-flow reactor
Cr(VI) remediation
graphene oxide
nanocomposites
nanocrystals
Pd–Pt bimetallic nanocrystal
porosity
reducing agents
remediation
separation
title Cellulose/GO monolith covered with Pd–Pt bimetallic nanocrystals for continuous-flow catalytic reduction of hexavalent chromium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulose/GO%20monolith%20covered%20with%20Pd%E2%80%93Pt%20bimetallic%20nanocrystals%20for%20continuous-flow%20catalytic%20reduction%20of%20hexavalent%20chromium&rft.jtitle=Carbohydrate%20polymers&rft.au=Pradyasti,%20Astrini&rft.date=2024-04-15&rft.volume=330&rft.spage=121837&rft.epage=121837&rft.pages=121837-121837&rft.artnum=121837&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.121837&rft_dat=%3Cproquest_cross%3E2928251136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928251136&rft_id=info:pmid/38368114&rft_els_id=S0144861724000638&rfr_iscdi=true