Ultra-high photoelectric conversion efficiency and obvious carrier separation in photovoltaic ZnIn2X4 (X = S, Se, and Te) van der Waals heterostructures

The need for low-carbon solar electricity production has become increasingly urgent for energy security and climate change mitigation. However, the bandgap and carrier separation critical requirements of high-efficiency solar cells are difficult to satisfy simultaneously in a single material. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2024-03, Vol.53 (10), p.4729-4736
Hauptverfasser: Zheng, Liang, Yao-Zhong, Liu, Ze-Ting Gong, Jun-Yao, Li, Yong-Sheng, Yao, Zhen-Kun Tang, Xiao-Lin, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4736
container_issue 10
container_start_page 4729
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 53
creator Zheng, Liang
Yao-Zhong, Liu
Ze-Ting Gong
Jun-Yao, Li
Yong-Sheng, Yao
Zhen-Kun Tang
Xiao-Lin, Wei
description The need for low-carbon solar electricity production has become increasingly urgent for energy security and climate change mitigation. However, the bandgap and carrier separation critical requirements of high-efficiency solar cells are difficult to satisfy simultaneously in a single material. In this work, several van der Waals ZnIn2X4 (X = S, Se, and Te) heterostructures were designed based on density functional theory. Our results suggest that both ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures are direct bandgap semiconductors at the Γ point. Besides, obvious carrier spatial separations were observed in the ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures. Interestingly, the ZnIn2S4/ZnIn2Se4 heterostructure has a suitable bandgap of 1.43 eV with good optical absorption in the visible light range. The calculated maximum theoretical photoelectric conversion efficiency of ZnIn2S4/ZnIn2Se4 heterostructure was 32.1%, and it can be further enhanced to 32.9% under 2% tensile strain. Compared to single-layer ZnIn2X4 materials, the electron effective mass of the ZnIn2S4/ZnIn2Se4 heterostructure is relatively low, which results in high electron mobility in the heterostructure. The suitable bandgap, obvious carrier separation, high electron mobility, and excellent theoretical photoelectric conversion efficiency of the ZnIn2S4/ZnIn2Se4 heterostructure make it a promising candidate for novel 2D-based photoelectronic devices and solar cells.
doi_str_mv 10.1039/d3dt04276f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928249254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928249254</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-30b01bbf335a039f1c4516a1f9ff7b6b202cc19064f3c77473ff26ab17e5e5393</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhosouH5c_AUBLwpWk0ma2IMHWfwCwcOuKF6WNJ3YSE3WJF3wn_hzrR948DTD8MzDzFsUe4weM8rrk5a3mQpQ0q4VEyaUKmvgYv2vB7lZbKX0QikArWBSfNz3Oeqyc88dWXYhB-zR5OgMMcGvMCYXPEFrnXHozTvRviWhWbkwJGJ0jA4jSbjUUecv0vkfyyr0WY-SJ3_j4VGQg0dyRmZHZIZH34o5HpKV9qQd1x-07hPpMGMMKcfB5CFi2ik27DjH3d-6XdxfXsyn1-Xt3dXN9Py2XAKTueS0oaxpLOeVHgOwzIiKSc1sba1qZAMUjGE1lcJyo5RQ3FqQumEKK6x4zbeLgx_vMoa3AVNevLpksO-1x_HJBdRwCqKGSozo_j_0JQzRj9eNFFfApQDJPwHQz3fE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937236426</pqid></control><display><type>article</type><title>Ultra-high photoelectric conversion efficiency and obvious carrier separation in photovoltaic ZnIn2X4 (X = S, Se, and Te) van der Waals heterostructures</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Zheng, Liang ; Yao-Zhong, Liu ; Ze-Ting Gong ; Jun-Yao, Li ; Yong-Sheng, Yao ; Zhen-Kun Tang ; Xiao-Lin, Wei</creator><creatorcontrib>Zheng, Liang ; Yao-Zhong, Liu ; Ze-Ting Gong ; Jun-Yao, Li ; Yong-Sheng, Yao ; Zhen-Kun Tang ; Xiao-Lin, Wei</creatorcontrib><description>The need for low-carbon solar electricity production has become increasingly urgent for energy security and climate change mitigation. However, the bandgap and carrier separation critical requirements of high-efficiency solar cells are difficult to satisfy simultaneously in a single material. In this work, several van der Waals ZnIn2X4 (X = S, Se, and Te) heterostructures were designed based on density functional theory. Our results suggest that both ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures are direct bandgap semiconductors at the Γ point. Besides, obvious carrier spatial separations were observed in the ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures. Interestingly, the ZnIn2S4/ZnIn2Se4 heterostructure has a suitable bandgap of 1.43 eV with good optical absorption in the visible light range. The calculated maximum theoretical photoelectric conversion efficiency of ZnIn2S4/ZnIn2Se4 heterostructure was 32.1%, and it can be further enhanced to 32.9% under 2% tensile strain. Compared to single-layer ZnIn2X4 materials, the electron effective mass of the ZnIn2S4/ZnIn2Se4 heterostructure is relatively low, which results in high electron mobility in the heterostructure. The suitable bandgap, obvious carrier separation, high electron mobility, and excellent theoretical photoelectric conversion efficiency of the ZnIn2S4/ZnIn2Se4 heterostructure make it a promising candidate for novel 2D-based photoelectronic devices and solar cells.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt04276f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Density functional theory ; Efficiency ; Electron mobility ; Energy conversion efficiency ; Energy gap ; Heterostructures ; Photoelectricity ; Photovoltaic cells ; Selenium ; Separation ; Solar cells ; Tellurium ; Tensile strain</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2024-03, Vol.53 (10), p.4729-4736</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Yao-Zhong, Liu</creatorcontrib><creatorcontrib>Ze-Ting Gong</creatorcontrib><creatorcontrib>Jun-Yao, Li</creatorcontrib><creatorcontrib>Yong-Sheng, Yao</creatorcontrib><creatorcontrib>Zhen-Kun Tang</creatorcontrib><creatorcontrib>Xiao-Lin, Wei</creatorcontrib><title>Ultra-high photoelectric conversion efficiency and obvious carrier separation in photovoltaic ZnIn2X4 (X = S, Se, and Te) van der Waals heterostructures</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>The need for low-carbon solar electricity production has become increasingly urgent for energy security and climate change mitigation. However, the bandgap and carrier separation critical requirements of high-efficiency solar cells are difficult to satisfy simultaneously in a single material. In this work, several van der Waals ZnIn2X4 (X = S, Se, and Te) heterostructures were designed based on density functional theory. Our results suggest that both ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures are direct bandgap semiconductors at the Γ point. Besides, obvious carrier spatial separations were observed in the ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures. Interestingly, the ZnIn2S4/ZnIn2Se4 heterostructure has a suitable bandgap of 1.43 eV with good optical absorption in the visible light range. The calculated maximum theoretical photoelectric conversion efficiency of ZnIn2S4/ZnIn2Se4 heterostructure was 32.1%, and it can be further enhanced to 32.9% under 2% tensile strain. Compared to single-layer ZnIn2X4 materials, the electron effective mass of the ZnIn2S4/ZnIn2Se4 heterostructure is relatively low, which results in high electron mobility in the heterostructure. The suitable bandgap, obvious carrier separation, high electron mobility, and excellent theoretical photoelectric conversion efficiency of the ZnIn2S4/ZnIn2Se4 heterostructure make it a promising candidate for novel 2D-based photoelectronic devices and solar cells.</description><subject>Density functional theory</subject><subject>Efficiency</subject><subject>Electron mobility</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Heterostructures</subject><subject>Photoelectricity</subject><subject>Photovoltaic cells</subject><subject>Selenium</subject><subject>Separation</subject><subject>Solar cells</subject><subject>Tellurium</subject><subject>Tensile strain</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhosouH5c_AUBLwpWk0ma2IMHWfwCwcOuKF6WNJ3YSE3WJF3wn_hzrR948DTD8MzDzFsUe4weM8rrk5a3mQpQ0q4VEyaUKmvgYv2vB7lZbKX0QikArWBSfNz3Oeqyc88dWXYhB-zR5OgMMcGvMCYXPEFrnXHozTvRviWhWbkwJGJ0jA4jSbjUUecv0vkfyyr0WY-SJ3_j4VGQg0dyRmZHZIZH34o5HpKV9qQd1x-07hPpMGMMKcfB5CFi2ik27DjH3d-6XdxfXsyn1-Xt3dXN9Py2XAKTueS0oaxpLOeVHgOwzIiKSc1sba1qZAMUjGE1lcJyo5RQ3FqQumEKK6x4zbeLgx_vMoa3AVNevLpksO-1x_HJBdRwCqKGSozo_j_0JQzRj9eNFFfApQDJPwHQz3fE</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Zheng, Liang</creator><creator>Yao-Zhong, Liu</creator><creator>Ze-Ting Gong</creator><creator>Jun-Yao, Li</creator><creator>Yong-Sheng, Yao</creator><creator>Zhen-Kun Tang</creator><creator>Xiao-Lin, Wei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240305</creationdate><title>Ultra-high photoelectric conversion efficiency and obvious carrier separation in photovoltaic ZnIn2X4 (X = S, Se, and Te) van der Waals heterostructures</title><author>Zheng, Liang ; Yao-Zhong, Liu ; Ze-Ting Gong ; Jun-Yao, Li ; Yong-Sheng, Yao ; Zhen-Kun Tang ; Xiao-Lin, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-30b01bbf335a039f1c4516a1f9ff7b6b202cc19064f3c77473ff26ab17e5e5393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density functional theory</topic><topic>Efficiency</topic><topic>Electron mobility</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Heterostructures</topic><topic>Photoelectricity</topic><topic>Photovoltaic cells</topic><topic>Selenium</topic><topic>Separation</topic><topic>Solar cells</topic><topic>Tellurium</topic><topic>Tensile strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Yao-Zhong, Liu</creatorcontrib><creatorcontrib>Ze-Ting Gong</creatorcontrib><creatorcontrib>Jun-Yao, Li</creatorcontrib><creatorcontrib>Yong-Sheng, Yao</creatorcontrib><creatorcontrib>Zhen-Kun Tang</creatorcontrib><creatorcontrib>Xiao-Lin, Wei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Liang</au><au>Yao-Zhong, Liu</au><au>Ze-Ting Gong</au><au>Jun-Yao, Li</au><au>Yong-Sheng, Yao</au><au>Zhen-Kun Tang</au><au>Xiao-Lin, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-high photoelectric conversion efficiency and obvious carrier separation in photovoltaic ZnIn2X4 (X = S, Se, and Te) van der Waals heterostructures</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2024-03-05</date><risdate>2024</risdate><volume>53</volume><issue>10</issue><spage>4729</spage><epage>4736</epage><pages>4729-4736</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>The need for low-carbon solar electricity production has become increasingly urgent for energy security and climate change mitigation. However, the bandgap and carrier separation critical requirements of high-efficiency solar cells are difficult to satisfy simultaneously in a single material. In this work, several van der Waals ZnIn2X4 (X = S, Se, and Te) heterostructures were designed based on density functional theory. Our results suggest that both ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures are direct bandgap semiconductors at the Γ point. Besides, obvious carrier spatial separations were observed in the ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures. Interestingly, the ZnIn2S4/ZnIn2Se4 heterostructure has a suitable bandgap of 1.43 eV with good optical absorption in the visible light range. The calculated maximum theoretical photoelectric conversion efficiency of ZnIn2S4/ZnIn2Se4 heterostructure was 32.1%, and it can be further enhanced to 32.9% under 2% tensile strain. Compared to single-layer ZnIn2X4 materials, the electron effective mass of the ZnIn2S4/ZnIn2Se4 heterostructure is relatively low, which results in high electron mobility in the heterostructure. The suitable bandgap, obvious carrier separation, high electron mobility, and excellent theoretical photoelectric conversion efficiency of the ZnIn2S4/ZnIn2Se4 heterostructure make it a promising candidate for novel 2D-based photoelectronic devices and solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3dt04276f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2024-03, Vol.53 (10), p.4729-4736
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2928249254
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Density functional theory
Efficiency
Electron mobility
Energy conversion efficiency
Energy gap
Heterostructures
Photoelectricity
Photovoltaic cells
Selenium
Separation
Solar cells
Tellurium
Tensile strain
title Ultra-high photoelectric conversion efficiency and obvious carrier separation in photovoltaic ZnIn2X4 (X = S, Se, and Te) van der Waals heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-high%20photoelectric%20conversion%20efficiency%20and%20obvious%20carrier%20separation%20in%20photovoltaic%20ZnIn2X4%20(X%20=%20S,%20Se,%20and%20Te)%20van%20der%20Waals%20heterostructures&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Zheng,%20Liang&rft.date=2024-03-05&rft.volume=53&rft.issue=10&rft.spage=4729&rft.epage=4736&rft.pages=4729-4736&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt04276f&rft_dat=%3Cproquest%3E2928249254%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937236426&rft_id=info:pmid/&rfr_iscdi=true