Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment

The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional inform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical radiology 2024-05, Vol.79 (5), p.338-345
Hauptverfasser: Ross, J., Hammouche, S., Chen, Y., Rockall, A.G., Alabed, S., Chen, M., Dwivedi, K., Fascia, D., Greenhalgh, R., Hall, M., Halliday, K., Harden, S., Ramsden, W., Shelmerdine, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue 5
container_start_page 338
container_title Clinical radiology
container_volume 79
creator Ross, J.
Hammouche, S.
Chen, Y.
Rockall, A.G.
Alabed, S.
Chen, M.
Dwivedi, K.
Fascia, D.
Greenhalgh, R.
Hall, M.
Halliday, K.
Harden, S.
Ramsden, W.
Shelmerdine, S.
description The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm.
doi_str_mv 10.1016/j.crad.2024.01.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928247889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000992602400076X</els_id><sourcerecordid>2928247889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e92d3dd067afb10e259a2cc6dbff2894c029fd25a8647c4b09ee32d53e8513d53</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERbcff4ADypFLwniSeGPEhVZQKlXiAhI3y2tPVl45cbCTSvn3ONrCkdPI8vO-Hj-MveVQceDiw6kyUdsKAZsKeAUoXrEdr0VbIspfr9kOAGQpUcAlu0rptB0bbN6wy7qrBbRc7Bjd0RpGW0Q6Ll7PIa6FCcPknR4NfSzoWftFz248FvkpF3w4roWOs-udcdoXbpzJe3ekTBd6yjmT6TCmfFNYmnxYBxrnG3bRa5_o9mVes59fv_y4_1Y-fX94vP_8VJoGYC5Joq2tBbHX_YEDYSs1GiPsoe-xk40BlL3FVnei2ZvmAJKoRtvW1LW8zvOavT_3TjH8XijNanDJ5A31SGFJCiV22Oy7TmYUz6iJIaVIvZqiG3RcFQe16VUntelVm14FXGW9OfTupX85DGT_Rf76zMCnM0D5l8-OokrGbXKsi2RmZYP7X_8fG7iOYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928247889</pqid></control><display><type>article</type><title>Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ross, J. ; Hammouche, S. ; Chen, Y. ; Rockall, A.G. ; Alabed, S. ; Chen, M. ; Dwivedi, K. ; Fascia, D. ; Greenhalgh, R. ; Hall, M. ; Halliday, K. ; Harden, S. ; Ramsden, W. ; Shelmerdine, S.</creator><creatorcontrib>Ross, J. ; Hammouche, S. ; Chen, Y. ; Rockall, A.G. ; Alabed, S. ; Chen, M. ; Dwivedi, K. ; Fascia, D. ; Greenhalgh, R. ; Hall, M. ; Halliday, K. ; Harden, S. ; Ramsden, W. ; Shelmerdine, S. ; Royal College of Radiologists AI Working Group ; Royal College of Radiologists AI Working Group</creatorcontrib><description>The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm.</description><identifier>ISSN: 0009-9260</identifier><identifier>ISSN: 1365-229X</identifier><identifier>EISSN: 1365-229X</identifier><identifier>DOI: 10.1016/j.crad.2024.01.026</identifier><identifier>PMID: 38360516</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Humans ; Radiography ; Radiology ; Reproducibility of Results</subject><ispartof>Clinical radiology, 2024-05, Vol.79 (5), p.338-345</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e92d3dd067afb10e259a2cc6dbff2894c029fd25a8647c4b09ee32d53e8513d53</citedby><cites>FETCH-LOGICAL-c400t-e92d3dd067afb10e259a2cc6dbff2894c029fd25a8647c4b09ee32d53e8513d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.crad.2024.01.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38360516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, J.</creatorcontrib><creatorcontrib>Hammouche, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Rockall, A.G.</creatorcontrib><creatorcontrib>Alabed, S.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Dwivedi, K.</creatorcontrib><creatorcontrib>Fascia, D.</creatorcontrib><creatorcontrib>Greenhalgh, R.</creatorcontrib><creatorcontrib>Hall, M.</creatorcontrib><creatorcontrib>Halliday, K.</creatorcontrib><creatorcontrib>Harden, S.</creatorcontrib><creatorcontrib>Ramsden, W.</creatorcontrib><creatorcontrib>Shelmerdine, S.</creatorcontrib><creatorcontrib>Royal College of Radiologists AI Working Group</creatorcontrib><creatorcontrib>Royal College of Radiologists AI Working Group</creatorcontrib><title>Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment</title><title>Clinical radiology</title><addtitle>Clin Radiol</addtitle><description>The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm.</description><subject>Artificial Intelligence</subject><subject>Humans</subject><subject>Radiography</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><issn>0009-9260</issn><issn>1365-229X</issn><issn>1365-229X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1ERbcff4ADypFLwniSeGPEhVZQKlXiAhI3y2tPVl45cbCTSvn3ONrCkdPI8vO-Hj-MveVQceDiw6kyUdsKAZsKeAUoXrEdr0VbIspfr9kOAGQpUcAlu0rptB0bbN6wy7qrBbRc7Bjd0RpGW0Q6Ll7PIa6FCcPknR4NfSzoWftFz248FvkpF3w4roWOs-udcdoXbpzJe3ekTBd6yjmT6TCmfFNYmnxYBxrnG3bRa5_o9mVes59fv_y4_1Y-fX94vP_8VJoGYC5Joq2tBbHX_YEDYSs1GiPsoe-xk40BlL3FVnei2ZvmAJKoRtvW1LW8zvOavT_3TjH8XijNanDJ5A31SGFJCiV22Oy7TmYUz6iJIaVIvZqiG3RcFQe16VUntelVm14FXGW9OfTupX85DGT_Rf76zMCnM0D5l8-OokrGbXKsi2RmZYP7X_8fG7iOYA</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ross, J.</creator><creator>Hammouche, S.</creator><creator>Chen, Y.</creator><creator>Rockall, A.G.</creator><creator>Alabed, S.</creator><creator>Chen, M.</creator><creator>Dwivedi, K.</creator><creator>Fascia, D.</creator><creator>Greenhalgh, R.</creator><creator>Hall, M.</creator><creator>Halliday, K.</creator><creator>Harden, S.</creator><creator>Ramsden, W.</creator><creator>Shelmerdine, S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment</title><author>Ross, J. ; Hammouche, S. ; Chen, Y. ; Rockall, A.G. ; Alabed, S. ; Chen, M. ; Dwivedi, K. ; Fascia, D. ; Greenhalgh, R. ; Hall, M. ; Halliday, K. ; Harden, S. ; Ramsden, W. ; Shelmerdine, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e92d3dd067afb10e259a2cc6dbff2894c029fd25a8647c4b09ee32d53e8513d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Humans</topic><topic>Radiography</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, J.</creatorcontrib><creatorcontrib>Hammouche, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Rockall, A.G.</creatorcontrib><creatorcontrib>Alabed, S.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Dwivedi, K.</creatorcontrib><creatorcontrib>Fascia, D.</creatorcontrib><creatorcontrib>Greenhalgh, R.</creatorcontrib><creatorcontrib>Hall, M.</creatorcontrib><creatorcontrib>Halliday, K.</creatorcontrib><creatorcontrib>Harden, S.</creatorcontrib><creatorcontrib>Ramsden, W.</creatorcontrib><creatorcontrib>Shelmerdine, S.</creatorcontrib><creatorcontrib>Royal College of Radiologists AI Working Group</creatorcontrib><creatorcontrib>Royal College of Radiologists AI Working Group</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, J.</au><au>Hammouche, S.</au><au>Chen, Y.</au><au>Rockall, A.G.</au><au>Alabed, S.</au><au>Chen, M.</au><au>Dwivedi, K.</au><au>Fascia, D.</au><au>Greenhalgh, R.</au><au>Hall, M.</au><au>Halliday, K.</au><au>Harden, S.</au><au>Ramsden, W.</au><au>Shelmerdine, S.</au><aucorp>Royal College of Radiologists AI Working Group</aucorp><aucorp>Royal College of Radiologists AI Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment</atitle><jtitle>Clinical radiology</jtitle><addtitle>Clin Radiol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>79</volume><issue>5</issue><spage>338</spage><epage>345</epage><pages>338-345</pages><issn>0009-9260</issn><issn>1365-229X</issn><eissn>1365-229X</eissn><abstract>The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38360516</pmid><doi>10.1016/j.crad.2024.01.026</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9260
ispartof Clinical radiology, 2024-05, Vol.79 (5), p.338-345
issn 0009-9260
1365-229X
1365-229X
language eng
recordid cdi_proquest_miscellaneous_2928247889
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Artificial Intelligence
Humans
Radiography
Radiology
Reproducibility of Results
title Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20regulatory%20compliance:%20evaluating%20radiology%20artificial%20intelligence%20applications%20in%20deployment&rft.jtitle=Clinical%20radiology&rft.au=Ross,%20J.&rft.aucorp=Royal%20College%20of%20Radiologists%20AI%20Working%20Group&rft.date=2024-05&rft.volume=79&rft.issue=5&rft.spage=338&rft.epage=345&rft.pages=338-345&rft.issn=0009-9260&rft.eissn=1365-229X&rft_id=info:doi/10.1016/j.crad.2024.01.026&rft_dat=%3Cproquest_cross%3E2928247889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928247889&rft_id=info:pmid/38360516&rft_els_id=S000992602400076X&rfr_iscdi=true