Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment
The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional inform...
Gespeichert in:
Veröffentlicht in: | Clinical radiology 2024-05, Vol.79 (5), p.338-345 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | 5 |
container_start_page | 338 |
container_title | Clinical radiology |
container_volume | 79 |
creator | Ross, J. Hammouche, S. Chen, Y. Rockall, A.G. Alabed, S. Chen, M. Dwivedi, K. Fascia, D. Greenhalgh, R. Hall, M. Halliday, K. Harden, S. Ramsden, W. Shelmerdine, S. |
description | The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm. |
doi_str_mv | 10.1016/j.crad.2024.01.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928247889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000992602400076X</els_id><sourcerecordid>2928247889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e92d3dd067afb10e259a2cc6dbff2894c029fd25a8647c4b09ee32d53e8513d53</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERbcff4ADypFLwniSeGPEhVZQKlXiAhI3y2tPVl45cbCTSvn3ONrCkdPI8vO-Hj-MveVQceDiw6kyUdsKAZsKeAUoXrEdr0VbIspfr9kOAGQpUcAlu0rptB0bbN6wy7qrBbRc7Bjd0RpGW0Q6Ll7PIa6FCcPknR4NfSzoWftFz248FvkpF3w4roWOs-udcdoXbpzJe3ekTBd6yjmT6TCmfFNYmnxYBxrnG3bRa5_o9mVes59fv_y4_1Y-fX94vP_8VJoGYC5Joq2tBbHX_YEDYSs1GiPsoe-xk40BlL3FVnei2ZvmAJKoRtvW1LW8zvOavT_3TjH8XijNanDJ5A31SGFJCiV22Oy7TmYUz6iJIaVIvZqiG3RcFQe16VUntelVm14FXGW9OfTupX85DGT_Rf76zMCnM0D5l8-OokrGbXKsi2RmZYP7X_8fG7iOYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928247889</pqid></control><display><type>article</type><title>Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ross, J. ; Hammouche, S. ; Chen, Y. ; Rockall, A.G. ; Alabed, S. ; Chen, M. ; Dwivedi, K. ; Fascia, D. ; Greenhalgh, R. ; Hall, M. ; Halliday, K. ; Harden, S. ; Ramsden, W. ; Shelmerdine, S.</creator><creatorcontrib>Ross, J. ; Hammouche, S. ; Chen, Y. ; Rockall, A.G. ; Alabed, S. ; Chen, M. ; Dwivedi, K. ; Fascia, D. ; Greenhalgh, R. ; Hall, M. ; Halliday, K. ; Harden, S. ; Ramsden, W. ; Shelmerdine, S. ; Royal College of Radiologists AI Working Group ; Royal College of Radiologists AI Working Group</creatorcontrib><description>The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm.</description><identifier>ISSN: 0009-9260</identifier><identifier>ISSN: 1365-229X</identifier><identifier>EISSN: 1365-229X</identifier><identifier>DOI: 10.1016/j.crad.2024.01.026</identifier><identifier>PMID: 38360516</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Humans ; Radiography ; Radiology ; Reproducibility of Results</subject><ispartof>Clinical radiology, 2024-05, Vol.79 (5), p.338-345</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e92d3dd067afb10e259a2cc6dbff2894c029fd25a8647c4b09ee32d53e8513d53</citedby><cites>FETCH-LOGICAL-c400t-e92d3dd067afb10e259a2cc6dbff2894c029fd25a8647c4b09ee32d53e8513d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.crad.2024.01.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38360516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, J.</creatorcontrib><creatorcontrib>Hammouche, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Rockall, A.G.</creatorcontrib><creatorcontrib>Alabed, S.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Dwivedi, K.</creatorcontrib><creatorcontrib>Fascia, D.</creatorcontrib><creatorcontrib>Greenhalgh, R.</creatorcontrib><creatorcontrib>Hall, M.</creatorcontrib><creatorcontrib>Halliday, K.</creatorcontrib><creatorcontrib>Harden, S.</creatorcontrib><creatorcontrib>Ramsden, W.</creatorcontrib><creatorcontrib>Shelmerdine, S.</creatorcontrib><creatorcontrib>Royal College of Radiologists AI Working Group</creatorcontrib><creatorcontrib>Royal College of Radiologists AI Working Group</creatorcontrib><title>Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment</title><title>Clinical radiology</title><addtitle>Clin Radiol</addtitle><description>The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm.</description><subject>Artificial Intelligence</subject><subject>Humans</subject><subject>Radiography</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><issn>0009-9260</issn><issn>1365-229X</issn><issn>1365-229X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1ERbcff4ADypFLwniSeGPEhVZQKlXiAhI3y2tPVl45cbCTSvn3ONrCkdPI8vO-Hj-MveVQceDiw6kyUdsKAZsKeAUoXrEdr0VbIspfr9kOAGQpUcAlu0rptB0bbN6wy7qrBbRc7Bjd0RpGW0Q6Ll7PIa6FCcPknR4NfSzoWftFz248FvkpF3w4roWOs-udcdoXbpzJe3ekTBd6yjmT6TCmfFNYmnxYBxrnG3bRa5_o9mVes59fv_y4_1Y-fX94vP_8VJoGYC5Joq2tBbHX_YEDYSs1GiPsoe-xk40BlL3FVnei2ZvmAJKoRtvW1LW8zvOavT_3TjH8XijNanDJ5A31SGFJCiV22Oy7TmYUz6iJIaVIvZqiG3RcFQe16VUntelVm14FXGW9OfTupX85DGT_Rf76zMCnM0D5l8-OokrGbXKsi2RmZYP7X_8fG7iOYA</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ross, J.</creator><creator>Hammouche, S.</creator><creator>Chen, Y.</creator><creator>Rockall, A.G.</creator><creator>Alabed, S.</creator><creator>Chen, M.</creator><creator>Dwivedi, K.</creator><creator>Fascia, D.</creator><creator>Greenhalgh, R.</creator><creator>Hall, M.</creator><creator>Halliday, K.</creator><creator>Harden, S.</creator><creator>Ramsden, W.</creator><creator>Shelmerdine, S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment</title><author>Ross, J. ; Hammouche, S. ; Chen, Y. ; Rockall, A.G. ; Alabed, S. ; Chen, M. ; Dwivedi, K. ; Fascia, D. ; Greenhalgh, R. ; Hall, M. ; Halliday, K. ; Harden, S. ; Ramsden, W. ; Shelmerdine, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e92d3dd067afb10e259a2cc6dbff2894c029fd25a8647c4b09ee32d53e8513d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Humans</topic><topic>Radiography</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, J.</creatorcontrib><creatorcontrib>Hammouche, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Rockall, A.G.</creatorcontrib><creatorcontrib>Alabed, S.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><creatorcontrib>Dwivedi, K.</creatorcontrib><creatorcontrib>Fascia, D.</creatorcontrib><creatorcontrib>Greenhalgh, R.</creatorcontrib><creatorcontrib>Hall, M.</creatorcontrib><creatorcontrib>Halliday, K.</creatorcontrib><creatorcontrib>Harden, S.</creatorcontrib><creatorcontrib>Ramsden, W.</creatorcontrib><creatorcontrib>Shelmerdine, S.</creatorcontrib><creatorcontrib>Royal College of Radiologists AI Working Group</creatorcontrib><creatorcontrib>Royal College of Radiologists AI Working Group</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, J.</au><au>Hammouche, S.</au><au>Chen, Y.</au><au>Rockall, A.G.</au><au>Alabed, S.</au><au>Chen, M.</au><au>Dwivedi, K.</au><au>Fascia, D.</au><au>Greenhalgh, R.</au><au>Hall, M.</au><au>Halliday, K.</au><au>Harden, S.</au><au>Ramsden, W.</au><au>Shelmerdine, S.</au><aucorp>Royal College of Radiologists AI Working Group</aucorp><aucorp>Royal College of Radiologists AI Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment</atitle><jtitle>Clinical radiology</jtitle><addtitle>Clin Radiol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>79</volume><issue>5</issue><spage>338</spage><epage>345</epage><pages>338-345</pages><issn>0009-9260</issn><issn>1365-229X</issn><eissn>1365-229X</eissn><abstract>The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38360516</pmid><doi>10.1016/j.crad.2024.01.026</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9260 |
ispartof | Clinical radiology, 2024-05, Vol.79 (5), p.338-345 |
issn | 0009-9260 1365-229X 1365-229X |
language | eng |
recordid | cdi_proquest_miscellaneous_2928247889 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Artificial Intelligence Humans Radiography Radiology Reproducibility of Results |
title | Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20regulatory%20compliance:%20evaluating%20radiology%20artificial%20intelligence%20applications%20in%20deployment&rft.jtitle=Clinical%20radiology&rft.au=Ross,%20J.&rft.aucorp=Royal%20College%20of%20Radiologists%20AI%20Working%20Group&rft.date=2024-05&rft.volume=79&rft.issue=5&rft.spage=338&rft.epage=345&rft.pages=338-345&rft.issn=0009-9260&rft.eissn=1365-229X&rft_id=info:doi/10.1016/j.crad.2024.01.026&rft_dat=%3Cproquest_cross%3E2928247889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928247889&rft_id=info:pmid/38360516&rft_els_id=S000992602400076X&rfr_iscdi=true |