Population genetic structure of tropical bed bug (Hemiptera: Cimicidae) populations and their breeding pattern in Iraq

Abstract A study was conducted to investigate the population genetic structure and breeding pattern of 140 tropical bed bugs, Cimex hemipterus (F.) (Hemiptera: Cimicidae), collected from 14 infested sites in major cities in Iraq. The samples were genotyped using a set of 7 polymorphic microsatellite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of insect science (Tucson, Ariz.) Ariz.), 2024-01, Vol.24 (1)
Hauptverfasser: Baqir, Hussein Ali, Ab Majid, Abdul Hafiz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract A study was conducted to investigate the population genetic structure and breeding pattern of 140 tropical bed bugs, Cimex hemipterus (F.) (Hemiptera: Cimicidae), collected from 14 infested sites in major cities in Iraq. The samples were genotyped using a set of 7 polymorphic microsatellite markers. High genetic variety was seen among populations, with an average of 2–9 alleles per locus. The number of alleles across 7 microsatellite loci was between 6 and 18. There was a notable disparity in the alleles per loci when comparing the overall population to those within it. The overall population exhibited an average observed heterozygosity of 0.175 and an average expected heterozygosity of 0.730. Among the population, the average observed heterozygosity was 0.173, while the average expected heterozygosity was 0.673. Analysis of molecular variance (AMOVA) revealed that 93% of the genetic variability was within the populations, and 7% was among them. The genetic differentiation coefficient (FST = 0.045), indicates a low degree of genetic differentiation and a high degree of inbreeding (FIS = 0.761), as indicated by notably significant positive inbreeding coefficients. Admixed individuals were revealed using STRUCTURE and neighbor-joining phylogenetic trees, demonstrating moderate gene flow between populations and a lack of genetic structure in the regional groups. Thus, both active dispersion and human-mediated dispersion possess the potential to influence the low population genetic structure of tropical bed bug C. hemipterus populations in Iraq, which can have implications toward tropical bed bug and management strategies.
ISSN:1536-2442
1536-2442
DOI:10.1093/jisesa/ieae010