Form design of product image using grey relational analysis and neural network models

This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus ident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2005-10, Vol.32 (10), p.2689-2711
Hauptverfasser: Lai, Hsin-Hsi, Lin, Yang-Cheng, Yeh, Chung-Hsing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2711
container_issue 10
container_start_page 2689
container_title Computers & operations research
container_volume 32
creator Lai, Hsin-Hsi
Lin, Yang-Cheng
Yeh, Chung-Hsing
description This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus identifying the most influential elements of product form for a given product image. A grey prediction (GP) model and a neural network (NN) model are used individually and in conjunction with the GRA model, in order to predict and suggest the best form design combination. An experimental study on the form design of mobile phones is conducted to evaluate the performance of these models. Based on expert surveys, the concept of Kansei Engineering is used to extract and evaluate the experimental samples, and a morphological analysis is used to extract form elements from these sample mobile phones. The evaluation result shows that all the NN-based models outperform the GP-based models, suggesting that the NN model should be used to help product designers determine the best combination of form elements for achieving a desirable product image. The GRA model can be incorporated into the NN model to help designers focus on the most influential elements in form design of mobile phones.
doi_str_mv 10.1016/j.cor.2004.03.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29280843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054804000735</els_id><sourcerecordid>29280843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-42bc3cabaead191cade07ab1bc5fdb491780759bf0d72460e59e4817bfcf3c413</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwA9gsBraEc2zXiZhQxZdUiQUkNsuxL5FLGhc7AfXf46pMDHg4n07vex9Pll1SKCjQxc26MD4UJQAvgBVQ0qNsRivJcrkQ78fZDBiIHASvTrOzGNeQnizpLHt78GFDLEbXDcS3ZBu8ncxI3EZ3SKboho50AXckYK9H5wfdE53CLrqYEksGnEKqDTh--_BBNt5iH8-zk1b3ES9-_3mac_-6fMpXL4_Py7tVbpgQY87LxjCjG43a0poabRGkbmhjRGsbXlNZgRR104KVJV8Aihp5RWXTmpYZTtk8uz70TWt_ThhHtXHRYN_rAf0UVVmXFVScJeHVH-HaTyHdERWtRVVykHsRPYhM8DEGbNU2JA5hpyioPWW1Vomy2lNWwFSinDy3B0-6Gr8cBhWNw8GgdQHNqKx3_7h_AHYNhkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195824073</pqid></control><display><type>article</type><title>Form design of product image using grey relational analysis and neural network models</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Lai, Hsin-Hsi ; Lin, Yang-Cheng ; Yeh, Chung-Hsing</creator><creatorcontrib>Lai, Hsin-Hsi ; Lin, Yang-Cheng ; Yeh, Chung-Hsing</creatorcontrib><description>This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus identifying the most influential elements of product form for a given product image. A grey prediction (GP) model and a neural network (NN) model are used individually and in conjunction with the GRA model, in order to predict and suggest the best form design combination. An experimental study on the form design of mobile phones is conducted to evaluate the performance of these models. Based on expert surveys, the concept of Kansei Engineering is used to extract and evaluate the experimental samples, and a morphological analysis is used to extract form elements from these sample mobile phones. The evaluation result shows that all the NN-based models outperform the GP-based models, suggesting that the NN model should be used to help product designers determine the best combination of form elements for achieving a desirable product image. The GRA model can be incorporated into the NN model to help designers focus on the most influential elements in form design of mobile phones.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2004.03.021</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Cellular telephones ; Content analysis ; Design ; Grey prediction ; Grey relational analysis ; Kansei Engineering ; Neural networks ; Product design ; Product form ; Product image ; Studies</subject><ispartof>Computers &amp; operations research, 2005-10, Vol.32 (10), p.2689-2711</ispartof><rights>2004 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Oct 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-42bc3cabaead191cade07ab1bc5fdb491780759bf0d72460e59e4817bfcf3c413</citedby><cites>FETCH-LOGICAL-c355t-42bc3cabaead191cade07ab1bc5fdb491780759bf0d72460e59e4817bfcf3c413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054804000735$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lai, Hsin-Hsi</creatorcontrib><creatorcontrib>Lin, Yang-Cheng</creatorcontrib><creatorcontrib>Yeh, Chung-Hsing</creatorcontrib><title>Form design of product image using grey relational analysis and neural network models</title><title>Computers &amp; operations research</title><description>This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus identifying the most influential elements of product form for a given product image. A grey prediction (GP) model and a neural network (NN) model are used individually and in conjunction with the GRA model, in order to predict and suggest the best form design combination. An experimental study on the form design of mobile phones is conducted to evaluate the performance of these models. Based on expert surveys, the concept of Kansei Engineering is used to extract and evaluate the experimental samples, and a morphological analysis is used to extract form elements from these sample mobile phones. The evaluation result shows that all the NN-based models outperform the GP-based models, suggesting that the NN model should be used to help product designers determine the best combination of form elements for achieving a desirable product image. The GRA model can be incorporated into the NN model to help designers focus on the most influential elements in form design of mobile phones.</description><subject>Cellular telephones</subject><subject>Content analysis</subject><subject>Design</subject><subject>Grey prediction</subject><subject>Grey relational analysis</subject><subject>Kansei Engineering</subject><subject>Neural networks</subject><subject>Product design</subject><subject>Product form</subject><subject>Product image</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwA9gsBraEc2zXiZhQxZdUiQUkNsuxL5FLGhc7AfXf46pMDHg4n07vex9Pll1SKCjQxc26MD4UJQAvgBVQ0qNsRivJcrkQ78fZDBiIHASvTrOzGNeQnizpLHt78GFDLEbXDcS3ZBu8ncxI3EZ3SKboho50AXckYK9H5wfdE53CLrqYEksGnEKqDTh--_BBNt5iH8-zk1b3ES9-_3mac_-6fMpXL4_Py7tVbpgQY87LxjCjG43a0poabRGkbmhjRGsbXlNZgRR104KVJV8Aihp5RWXTmpYZTtk8uz70TWt_ThhHtXHRYN_rAf0UVVmXFVScJeHVH-HaTyHdERWtRVVykHsRPYhM8DEGbNU2JA5hpyioPWW1Vomy2lNWwFSinDy3B0-6Gr8cBhWNw8GgdQHNqKx3_7h_AHYNhkM</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Lai, Hsin-Hsi</creator><creator>Lin, Yang-Cheng</creator><creator>Yeh, Chung-Hsing</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200510</creationdate><title>Form design of product image using grey relational analysis and neural network models</title><author>Lai, Hsin-Hsi ; Lin, Yang-Cheng ; Yeh, Chung-Hsing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-42bc3cabaead191cade07ab1bc5fdb491780759bf0d72460e59e4817bfcf3c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cellular telephones</topic><topic>Content analysis</topic><topic>Design</topic><topic>Grey prediction</topic><topic>Grey relational analysis</topic><topic>Kansei Engineering</topic><topic>Neural networks</topic><topic>Product design</topic><topic>Product form</topic><topic>Product image</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Hsin-Hsi</creatorcontrib><creatorcontrib>Lin, Yang-Cheng</creatorcontrib><creatorcontrib>Yeh, Chung-Hsing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Hsin-Hsi</au><au>Lin, Yang-Cheng</au><au>Yeh, Chung-Hsing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Form design of product image using grey relational analysis and neural network models</atitle><jtitle>Computers &amp; operations research</jtitle><date>2005-10</date><risdate>2005</risdate><volume>32</volume><issue>10</issue><spage>2689</spage><epage>2711</epage><pages>2689-2711</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus identifying the most influential elements of product form for a given product image. A grey prediction (GP) model and a neural network (NN) model are used individually and in conjunction with the GRA model, in order to predict and suggest the best form design combination. An experimental study on the form design of mobile phones is conducted to evaluate the performance of these models. Based on expert surveys, the concept of Kansei Engineering is used to extract and evaluate the experimental samples, and a morphological analysis is used to extract form elements from these sample mobile phones. The evaluation result shows that all the NN-based models outperform the GP-based models, suggesting that the NN model should be used to help product designers determine the best combination of form elements for achieving a desirable product image. The GRA model can be incorporated into the NN model to help designers focus on the most influential elements in form design of mobile phones.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2004.03.021</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2005-10, Vol.32 (10), p.2689-2711
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_29280843
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Cellular telephones
Content analysis
Design
Grey prediction
Grey relational analysis
Kansei Engineering
Neural networks
Product design
Product form
Product image
Studies
title Form design of product image using grey relational analysis and neural network models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Form%20design%20of%20product%20image%20using%20grey%20relational%20analysis%20and%20neural%20network%20models&rft.jtitle=Computers%20&%20operations%20research&rft.au=Lai,%20Hsin-Hsi&rft.date=2005-10&rft.volume=32&rft.issue=10&rft.spage=2689&rft.epage=2711&rft.pages=2689-2711&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2004.03.021&rft_dat=%3Cproquest_cross%3E29280843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195824073&rft_id=info:pmid/&rft_els_id=S0305054804000735&rfr_iscdi=true