Form design of product image using grey relational analysis and neural network models
This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus ident...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2005-10, Vol.32 (10), p.2689-2711 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2711 |
---|---|
container_issue | 10 |
container_start_page | 2689 |
container_title | Computers & operations research |
container_volume | 32 |
creator | Lai, Hsin-Hsi Lin, Yang-Cheng Yeh, Chung-Hsing |
description | This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus identifying the most influential elements of product form for a given product image. A grey prediction (GP) model and a neural network (NN) model are used individually and in conjunction with the GRA model, in order to predict and suggest the best form design combination. An experimental study on the form design of mobile phones is conducted to evaluate the performance of these models. Based on expert surveys, the concept of Kansei Engineering is used to extract and evaluate the experimental samples, and a morphological analysis is used to extract form elements from these sample mobile phones. The evaluation result shows that all the NN-based models outperform the GP-based models, suggesting that the NN model should be used to help product designers determine the best combination of form elements for achieving a desirable product image. The GRA model can be incorporated into the NN model to help designers focus on the most influential elements in form design of mobile phones. |
doi_str_mv | 10.1016/j.cor.2004.03.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29280843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054804000735</els_id><sourcerecordid>29280843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-42bc3cabaead191cade07ab1bc5fdb491780759bf0d72460e59e4817bfcf3c413</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwA9gsBraEc2zXiZhQxZdUiQUkNsuxL5FLGhc7AfXf46pMDHg4n07vex9Pll1SKCjQxc26MD4UJQAvgBVQ0qNsRivJcrkQ78fZDBiIHASvTrOzGNeQnizpLHt78GFDLEbXDcS3ZBu8ncxI3EZ3SKboho50AXckYK9H5wfdE53CLrqYEksGnEKqDTh--_BBNt5iH8-zk1b3ES9-_3mac_-6fMpXL4_Py7tVbpgQY87LxjCjG43a0poabRGkbmhjRGsbXlNZgRR104KVJV8Aihp5RWXTmpYZTtk8uz70TWt_ThhHtXHRYN_rAf0UVVmXFVScJeHVH-HaTyHdERWtRVVykHsRPYhM8DEGbNU2JA5hpyioPWW1Vomy2lNWwFSinDy3B0-6Gr8cBhWNw8GgdQHNqKx3_7h_AHYNhkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195824073</pqid></control><display><type>article</type><title>Form design of product image using grey relational analysis and neural network models</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Lai, Hsin-Hsi ; Lin, Yang-Cheng ; Yeh, Chung-Hsing</creator><creatorcontrib>Lai, Hsin-Hsi ; Lin, Yang-Cheng ; Yeh, Chung-Hsing</creatorcontrib><description>This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus identifying the most influential elements of product form for a given product image. A grey prediction (GP) model and a neural network (NN) model are used individually and in conjunction with the GRA model, in order to predict and suggest the best form design combination. An experimental study on the form design of mobile phones is conducted to evaluate the performance of these models. Based on expert surveys, the concept of Kansei Engineering is used to extract and evaluate the experimental samples, and a morphological analysis is used to extract form elements from these sample mobile phones. The evaluation result shows that all the NN-based models outperform the GP-based models, suggesting that the NN model should be used to help product designers determine the best combination of form elements for achieving a desirable product image. The GRA model can be incorporated into the NN model to help designers focus on the most influential elements in form design of mobile phones.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2004.03.021</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Cellular telephones ; Content analysis ; Design ; Grey prediction ; Grey relational analysis ; Kansei Engineering ; Neural networks ; Product design ; Product form ; Product image ; Studies</subject><ispartof>Computers & operations research, 2005-10, Vol.32 (10), p.2689-2711</ispartof><rights>2004 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Oct 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-42bc3cabaead191cade07ab1bc5fdb491780759bf0d72460e59e4817bfcf3c413</citedby><cites>FETCH-LOGICAL-c355t-42bc3cabaead191cade07ab1bc5fdb491780759bf0d72460e59e4817bfcf3c413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054804000735$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lai, Hsin-Hsi</creatorcontrib><creatorcontrib>Lin, Yang-Cheng</creatorcontrib><creatorcontrib>Yeh, Chung-Hsing</creatorcontrib><title>Form design of product image using grey relational analysis and neural network models</title><title>Computers & operations research</title><description>This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus identifying the most influential elements of product form for a given product image. A grey prediction (GP) model and a neural network (NN) model are used individually and in conjunction with the GRA model, in order to predict and suggest the best form design combination. An experimental study on the form design of mobile phones is conducted to evaluate the performance of these models. Based on expert surveys, the concept of Kansei Engineering is used to extract and evaluate the experimental samples, and a morphological analysis is used to extract form elements from these sample mobile phones. The evaluation result shows that all the NN-based models outperform the GP-based models, suggesting that the NN model should be used to help product designers determine the best combination of form elements for achieving a desirable product image. The GRA model can be incorporated into the NN model to help designers focus on the most influential elements in form design of mobile phones.</description><subject>Cellular telephones</subject><subject>Content analysis</subject><subject>Design</subject><subject>Grey prediction</subject><subject>Grey relational analysis</subject><subject>Kansei Engineering</subject><subject>Neural networks</subject><subject>Product design</subject><subject>Product form</subject><subject>Product image</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwA9gsBraEc2zXiZhQxZdUiQUkNsuxL5FLGhc7AfXf46pMDHg4n07vex9Pll1SKCjQxc26MD4UJQAvgBVQ0qNsRivJcrkQ78fZDBiIHASvTrOzGNeQnizpLHt78GFDLEbXDcS3ZBu8ncxI3EZ3SKboho50AXckYK9H5wfdE53CLrqYEksGnEKqDTh--_BBNt5iH8-zk1b3ES9-_3mac_-6fMpXL4_Py7tVbpgQY87LxjCjG43a0poabRGkbmhjRGsbXlNZgRR104KVJV8Aihp5RWXTmpYZTtk8uz70TWt_ThhHtXHRYN_rAf0UVVmXFVScJeHVH-HaTyHdERWtRVVykHsRPYhM8DEGbNU2JA5hpyioPWW1Vomy2lNWwFSinDy3B0-6Gr8cBhWNw8GgdQHNqKx3_7h_AHYNhkM</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Lai, Hsin-Hsi</creator><creator>Lin, Yang-Cheng</creator><creator>Yeh, Chung-Hsing</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200510</creationdate><title>Form design of product image using grey relational analysis and neural network models</title><author>Lai, Hsin-Hsi ; Lin, Yang-Cheng ; Yeh, Chung-Hsing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-42bc3cabaead191cade07ab1bc5fdb491780759bf0d72460e59e4817bfcf3c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cellular telephones</topic><topic>Content analysis</topic><topic>Design</topic><topic>Grey prediction</topic><topic>Grey relational analysis</topic><topic>Kansei Engineering</topic><topic>Neural networks</topic><topic>Product design</topic><topic>Product form</topic><topic>Product image</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Hsin-Hsi</creatorcontrib><creatorcontrib>Lin, Yang-Cheng</creatorcontrib><creatorcontrib>Yeh, Chung-Hsing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Hsin-Hsi</au><au>Lin, Yang-Cheng</au><au>Yeh, Chung-Hsing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Form design of product image using grey relational analysis and neural network models</atitle><jtitle>Computers & operations research</jtitle><date>2005-10</date><risdate>2005</risdate><volume>32</volume><issue>10</issue><spage>2689</spage><epage>2711</epage><pages>2689-2711</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>This paper presents a new approach to determining the best design combination of product form elements for matching a given product image represented by a word pair. A grey relational analysis (GRA) model is used to examine the relationship between product form elements and product image, thus identifying the most influential elements of product form for a given product image. A grey prediction (GP) model and a neural network (NN) model are used individually and in conjunction with the GRA model, in order to predict and suggest the best form design combination. An experimental study on the form design of mobile phones is conducted to evaluate the performance of these models. Based on expert surveys, the concept of Kansei Engineering is used to extract and evaluate the experimental samples, and a morphological analysis is used to extract form elements from these sample mobile phones. The evaluation result shows that all the NN-based models outperform the GP-based models, suggesting that the NN model should be used to help product designers determine the best combination of form elements for achieving a desirable product image. The GRA model can be incorporated into the NN model to help designers focus on the most influential elements in form design of mobile phones.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2004.03.021</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2005-10, Vol.32 (10), p.2689-2711 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_29280843 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Cellular telephones Content analysis Design Grey prediction Grey relational analysis Kansei Engineering Neural networks Product design Product form Product image Studies |
title | Form design of product image using grey relational analysis and neural network models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Form%20design%20of%20product%20image%20using%20grey%20relational%20analysis%20and%20neural%20network%20models&rft.jtitle=Computers%20&%20operations%20research&rft.au=Lai,%20Hsin-Hsi&rft.date=2005-10&rft.volume=32&rft.issue=10&rft.spage=2689&rft.epage=2711&rft.pages=2689-2711&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2004.03.021&rft_dat=%3Cproquest_cross%3E29280843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195824073&rft_id=info:pmid/&rft_els_id=S0305054804000735&rfr_iscdi=true |