A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials
This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem i...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2005, Vol.83 (1), p.35-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Computers & structures |
container_volume | 83 |
creator | Ahmed, S. Reaz Hossain, M. Zubaer Uddin, M. Wahhaj |
description | This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem is formulated in terms of a single potential function, defined in terms of the displacement components. In addition, the formulation contains a new scheme of reduction of unknowns to be solved for a particular problem. Compared to the conventional computational approaches, the present scheme gets solution of higher accuracy and in extremely shorter time. The application of the present scheme is demonstrated here through a classical problem of solid mechanics, and the results are compared with the available solutions in the literature. |
doi_str_mv | 10.1016/j.compstruc.2004.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29280724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579490400313X</els_id><sourcerecordid>29280724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-1a039dac70e238e172b1bf4ef8e2813edf187a6a8faee712fe32e02366ce3a023</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG-gFbi1O0jXpcZr4kpC4wDnKUgcytc1I2gnEnydlCI5cYlt-7Td-CDmnUFCg1dWmML7bxiGMpmAAZQGyABAHZEalqHPGSn5IZqmxyEVd1sfkJMYNAFQlwIx8LrMX7DHoNuv08IrpcSYV1odubFPh-ynPrOvdgHnjrMWAvcEs-nb8bnubde4dm3ztx77R4SPf6XbEbBv8usUuTgLdu-iH4LfOTD4YnG7jKTmyKeDZT5yT55vrp9Vd_vB4e79aPuSGi2rIqQZeN9oIQMYlUsHWdG1LtBKZpBwbmw7VlZZWIwrKLHKGwHhVGeQ6JXNyud-bfvQ2YhxU56LBttU9-jEqVjMJInGaE7EXmuBjDGjVNrguXaQoqAm22qhf2GqCrUCqBDtNXvxY6Jjw2aB74-LfeMWpLMtF0i33Okz37hwGFY2bcDYuoBlU492_Xl_Ez53-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29280724</pqid></control><display><type>article</type><title>A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials</title><source>Elsevier ScienceDirect Journals</source><creator>Ahmed, S. Reaz ; Hossain, M. Zubaer ; Uddin, M. Wahhaj</creator><creatorcontrib>Ahmed, S. Reaz ; Hossain, M. Zubaer ; Uddin, M. Wahhaj</creatorcontrib><description>This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem is formulated in terms of a single potential function, defined in terms of the displacement components. In addition, the formulation contains a new scheme of reduction of unknowns to be solved for a particular problem. Compared to the conventional computational approaches, the present scheme gets solution of higher accuracy and in extremely shorter time. The application of the present scheme is demonstrated here through a classical problem of solid mechanics, and the results are compared with the available solutions in the literature.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2004.08.007</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anisotropic materials ; Displacement potential function ; Exact sciences and technology ; Finite-difference method ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress analysis ; Structural and continuum mechanics</subject><ispartof>Computers & structures, 2005, Vol.83 (1), p.35-51</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-1a039dac70e238e172b1bf4ef8e2813edf187a6a8faee712fe32e02366ce3a023</citedby><cites>FETCH-LOGICAL-c376t-1a039dac70e238e172b1bf4ef8e2813edf187a6a8faee712fe32e02366ce3a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579490400313X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16318445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, S. Reaz</creatorcontrib><creatorcontrib>Hossain, M. Zubaer</creatorcontrib><creatorcontrib>Uddin, M. Wahhaj</creatorcontrib><title>A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials</title><title>Computers & structures</title><description>This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem is formulated in terms of a single potential function, defined in terms of the displacement components. In addition, the formulation contains a new scheme of reduction of unknowns to be solved for a particular problem. Compared to the conventional computational approaches, the present scheme gets solution of higher accuracy and in extremely shorter time. The application of the present scheme is demonstrated here through a classical problem of solid mechanics, and the results are compared with the available solutions in the literature.</description><subject>Anisotropic materials</subject><subject>Displacement potential function</subject><subject>Exact sciences and technology</subject><subject>Finite-difference method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress analysis</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwG-gFbi1O0jXpcZr4kpC4wDnKUgcytc1I2gnEnydlCI5cYlt-7Td-CDmnUFCg1dWmML7bxiGMpmAAZQGyABAHZEalqHPGSn5IZqmxyEVd1sfkJMYNAFQlwIx8LrMX7DHoNuv08IrpcSYV1odubFPh-ynPrOvdgHnjrMWAvcEs-nb8bnubde4dm3ztx77R4SPf6XbEbBv8usUuTgLdu-iH4LfOTD4YnG7jKTmyKeDZT5yT55vrp9Vd_vB4e79aPuSGi2rIqQZeN9oIQMYlUsHWdG1LtBKZpBwbmw7VlZZWIwrKLHKGwHhVGeQ6JXNyud-bfvQ2YhxU56LBttU9-jEqVjMJInGaE7EXmuBjDGjVNrguXaQoqAm22qhf2GqCrUCqBDtNXvxY6Jjw2aB74-LfeMWpLMtF0i33Okz37hwGFY2bcDYuoBlU492_Xl_Ez53-</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ahmed, S. Reaz</creator><creator>Hossain, M. Zubaer</creator><creator>Uddin, M. Wahhaj</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2005</creationdate><title>A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials</title><author>Ahmed, S. Reaz ; Hossain, M. Zubaer ; Uddin, M. Wahhaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-1a039dac70e238e172b1bf4ef8e2813edf187a6a8faee712fe32e02366ce3a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic materials</topic><topic>Displacement potential function</topic><topic>Exact sciences and technology</topic><topic>Finite-difference method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress analysis</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, S. Reaz</creatorcontrib><creatorcontrib>Hossain, M. Zubaer</creatorcontrib><creatorcontrib>Uddin, M. Wahhaj</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, S. Reaz</au><au>Hossain, M. Zubaer</au><au>Uddin, M. Wahhaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials</atitle><jtitle>Computers & structures</jtitle><date>2005</date><risdate>2005</risdate><volume>83</volume><issue>1</issue><spage>35</spage><epage>51</epage><pages>35-51</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem is formulated in terms of a single potential function, defined in terms of the displacement components. In addition, the formulation contains a new scheme of reduction of unknowns to be solved for a particular problem. Compared to the conventional computational approaches, the present scheme gets solution of higher accuracy and in extremely shorter time. The application of the present scheme is demonstrated here through a classical problem of solid mechanics, and the results are compared with the available solutions in the literature.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2004.08.007</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2005, Vol.83 (1), p.35-51 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_29280724 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropic materials Displacement potential function Exact sciences and technology Finite-difference method Fundamental areas of phenomenology (including applications) Physics Solid mechanics Static elasticity (thermoelasticity...) Stress analysis Structural and continuum mechanics |
title | A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20mathematical%20formulation%20for%20finite-difference%20solution%20of%20mixed-boundary-value%20problems%20of%20anisotropic%20materials&rft.jtitle=Computers%20&%20structures&rft.au=Ahmed,%20S.%20Reaz&rft.date=2005&rft.volume=83&rft.issue=1&rft.spage=35&rft.epage=51&rft.pages=35-51&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2004.08.007&rft_dat=%3Cproquest_cross%3E29280724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29280724&rft_id=info:pmid/&rft_els_id=S004579490400313X&rfr_iscdi=true |