A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials

This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2005, Vol.83 (1), p.35-51
Hauptverfasser: Ahmed, S. Reaz, Hossain, M. Zubaer, Uddin, M. Wahhaj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 35
container_title Computers & structures
container_volume 83
creator Ahmed, S. Reaz
Hossain, M. Zubaer
Uddin, M. Wahhaj
description This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem is formulated in terms of a single potential function, defined in terms of the displacement components. In addition, the formulation contains a new scheme of reduction of unknowns to be solved for a particular problem. Compared to the conventional computational approaches, the present scheme gets solution of higher accuracy and in extremely shorter time. The application of the present scheme is demonstrated here through a classical problem of solid mechanics, and the results are compared with the available solutions in the literature.
doi_str_mv 10.1016/j.compstruc.2004.08.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29280724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579490400313X</els_id><sourcerecordid>29280724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-1a039dac70e238e172b1bf4ef8e2813edf187a6a8faee712fe32e02366ce3a023</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG-gFbi1O0jXpcZr4kpC4wDnKUgcytc1I2gnEnydlCI5cYlt-7Td-CDmnUFCg1dWmML7bxiGMpmAAZQGyABAHZEalqHPGSn5IZqmxyEVd1sfkJMYNAFQlwIx8LrMX7DHoNuv08IrpcSYV1odubFPh-ynPrOvdgHnjrMWAvcEs-nb8bnubde4dm3ztx77R4SPf6XbEbBv8usUuTgLdu-iH4LfOTD4YnG7jKTmyKeDZT5yT55vrp9Vd_vB4e79aPuSGi2rIqQZeN9oIQMYlUsHWdG1LtBKZpBwbmw7VlZZWIwrKLHKGwHhVGeQ6JXNyud-bfvQ2YhxU56LBttU9-jEqVjMJInGaE7EXmuBjDGjVNrguXaQoqAm22qhf2GqCrUCqBDtNXvxY6Jjw2aB74-LfeMWpLMtF0i33Okz37hwGFY2bcDYuoBlU492_Xl_Ez53-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29280724</pqid></control><display><type>article</type><title>A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials</title><source>Elsevier ScienceDirect Journals</source><creator>Ahmed, S. Reaz ; Hossain, M. Zubaer ; Uddin, M. Wahhaj</creator><creatorcontrib>Ahmed, S. Reaz ; Hossain, M. Zubaer ; Uddin, M. Wahhaj</creatorcontrib><description>This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem is formulated in terms of a single potential function, defined in terms of the displacement components. In addition, the formulation contains a new scheme of reduction of unknowns to be solved for a particular problem. Compared to the conventional computational approaches, the present scheme gets solution of higher accuracy and in extremely shorter time. The application of the present scheme is demonstrated here through a classical problem of solid mechanics, and the results are compared with the available solutions in the literature.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2004.08.007</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anisotropic materials ; Displacement potential function ; Exact sciences and technology ; Finite-difference method ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress analysis ; Structural and continuum mechanics</subject><ispartof>Computers &amp; structures, 2005, Vol.83 (1), p.35-51</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-1a039dac70e238e172b1bf4ef8e2813edf187a6a8faee712fe32e02366ce3a023</citedby><cites>FETCH-LOGICAL-c376t-1a039dac70e238e172b1bf4ef8e2813edf187a6a8faee712fe32e02366ce3a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579490400313X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16318445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, S. Reaz</creatorcontrib><creatorcontrib>Hossain, M. Zubaer</creatorcontrib><creatorcontrib>Uddin, M. Wahhaj</creatorcontrib><title>A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials</title><title>Computers &amp; structures</title><description>This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem is formulated in terms of a single potential function, defined in terms of the displacement components. In addition, the formulation contains a new scheme of reduction of unknowns to be solved for a particular problem. Compared to the conventional computational approaches, the present scheme gets solution of higher accuracy and in extremely shorter time. The application of the present scheme is demonstrated here through a classical problem of solid mechanics, and the results are compared with the available solutions in the literature.</description><subject>Anisotropic materials</subject><subject>Displacement potential function</subject><subject>Exact sciences and technology</subject><subject>Finite-difference method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress analysis</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwG-gFbi1O0jXpcZr4kpC4wDnKUgcytc1I2gnEnydlCI5cYlt-7Td-CDmnUFCg1dWmML7bxiGMpmAAZQGyABAHZEalqHPGSn5IZqmxyEVd1sfkJMYNAFQlwIx8LrMX7DHoNuv08IrpcSYV1odubFPh-ynPrOvdgHnjrMWAvcEs-nb8bnubde4dm3ztx77R4SPf6XbEbBv8usUuTgLdu-iH4LfOTD4YnG7jKTmyKeDZT5yT55vrp9Vd_vB4e79aPuSGi2rIqQZeN9oIQMYlUsHWdG1LtBKZpBwbmw7VlZZWIwrKLHKGwHhVGeQ6JXNyud-bfvQ2YhxU56LBttU9-jEqVjMJInGaE7EXmuBjDGjVNrguXaQoqAm22qhf2GqCrUCqBDtNXvxY6Jjw2aB74-LfeMWpLMtF0i33Okz37hwGFY2bcDYuoBlU492_Xl_Ez53-</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ahmed, S. Reaz</creator><creator>Hossain, M. Zubaer</creator><creator>Uddin, M. Wahhaj</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2005</creationdate><title>A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials</title><author>Ahmed, S. Reaz ; Hossain, M. Zubaer ; Uddin, M. Wahhaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-1a039dac70e238e172b1bf4ef8e2813edf187a6a8faee712fe32e02366ce3a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic materials</topic><topic>Displacement potential function</topic><topic>Exact sciences and technology</topic><topic>Finite-difference method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress analysis</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, S. Reaz</creatorcontrib><creatorcontrib>Hossain, M. Zubaer</creatorcontrib><creatorcontrib>Uddin, M. Wahhaj</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, S. Reaz</au><au>Hossain, M. Zubaer</au><au>Uddin, M. Wahhaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials</atitle><jtitle>Computers &amp; structures</jtitle><date>2005</date><risdate>2005</risdate><volume>83</volume><issue>1</issue><spage>35</spage><epage>51</epage><pages>35-51</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>This paper presents a general mathematical model, especially suitable for finite-difference analysis of stresses and displacements of the plane elastic problems of solid mechanics. The present formulation covers the problems of anisotropic, orthotropic and isotropic materials, in which the problem is formulated in terms of a single potential function, defined in terms of the displacement components. In addition, the formulation contains a new scheme of reduction of unknowns to be solved for a particular problem. Compared to the conventional computational approaches, the present scheme gets solution of higher accuracy and in extremely shorter time. The application of the present scheme is demonstrated here through a classical problem of solid mechanics, and the results are compared with the available solutions in the literature.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2004.08.007</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2005, Vol.83 (1), p.35-51
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_29280724
source Elsevier ScienceDirect Journals
subjects Anisotropic materials
Displacement potential function
Exact sciences and technology
Finite-difference method
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Stress analysis
Structural and continuum mechanics
title A general mathematical formulation for finite-difference solution of mixed-boundary-value problems of anisotropic materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20mathematical%20formulation%20for%20finite-difference%20solution%20of%20mixed-boundary-value%20problems%20of%20anisotropic%20materials&rft.jtitle=Computers%20&%20structures&rft.au=Ahmed,%20S.%20Reaz&rft.date=2005&rft.volume=83&rft.issue=1&rft.spage=35&rft.epage=51&rft.pages=35-51&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2004.08.007&rft_dat=%3Cproquest_cross%3E29280724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29280724&rft_id=info:pmid/&rft_els_id=S004579490400313X&rfr_iscdi=true