Gas distribution in molten-carbonate fuel cells
This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2006-11, Vol.162 (2), p.1029-1035 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1035 |
---|---|
container_issue | 2 |
container_start_page | 1029 |
container_title | Journal of power sources |
container_volume | 162 |
creator | Okada, Tatsunori Matsumoto, Shuichi Matsumura, Mitsuie Miyazaki, Masayuki Umeda, Minoru |
description | This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each cell uniformly and to achieve a reasonable temperature distribution, we have proposed a large-scale stack divided into four blocks from the point of view of the gas flow scheme. In our proposal, each block consists of 55 cells, 9 internal reforming units, and 1 internal manifold. The flow variation was examined by measurements on an element, numerical analysis, and measurements on a stack. We have found that (i) the flow variation among the four blocks is 1.5% or less and can be made better by using an orifice plate; (ii) the flow variation along the stacking direction in each block is within ±1%; (iii) improvement of the flow distribution in the reforming unit affects the uniformity of the temperature distribution in the cell area. These results can improve the prospects for 200
kW stacks. |
doi_str_mv | 10.1016/j.jpowsour.2006.08.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29278524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775306015618</els_id><sourcerecordid>29278524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-759e9118bfa00af02f56c6fa50bce217e8b20fa890dd08c7be356aaaa8ff7213</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwF1AW2JKe7Tp2NlBFC1Illu6W45wlR2lc7ATEvydVixi55ZbnvY-HkHsKBQVaLtqiPYSvFMZYMICyAFUAZRdkRpXkOZNCXJIZcKlyKQW_JjcptQBAqYQZWWxMyhqfhujrcfChz3yf7UM3YJ9bE-vQmwEzN2KXWey6dEuunOkS3p37nOzWL7vVa75937ytnre55ZIPuRQVVpSq2hkA44A5UdrSGQG1RUYlqpqBM6qCpgFlZY1clGYq5ZxklM_J42nsIYaPEdOg9z4dDzA9hjFpVjGpBFtOYHkCbQwpRXT6EP3exG9NQR_16Fb_6tFHPRqUnvRMwYfzBpOs6Vw0vfXpL614teRCTNzTicPp20-PUSfrsbfY-Ih20E3w_636AcEXf2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29278524</pqid></control><display><type>article</type><title>Gas distribution in molten-carbonate fuel cells</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Okada, Tatsunori ; Matsumoto, Shuichi ; Matsumura, Mitsuie ; Miyazaki, Masayuki ; Umeda, Minoru</creator><creatorcontrib>Okada, Tatsunori ; Matsumoto, Shuichi ; Matsumura, Mitsuie ; Miyazaki, Masayuki ; Umeda, Minoru</creatorcontrib><description>This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each cell uniformly and to achieve a reasonable temperature distribution, we have proposed a large-scale stack divided into four blocks from the point of view of the gas flow scheme. In our proposal, each block consists of 55 cells, 9 internal reforming units, and 1 internal manifold. The flow variation was examined by measurements on an element, numerical analysis, and measurements on a stack. We have found that (i) the flow variation among the four blocks is 1.5% or less and can be made better by using an orifice plate; (ii) the flow variation along the stacking direction in each block is within ±1%; (iii) improvement of the flow distribution in the reforming unit affects the uniformity of the temperature distribution in the cell area. These results can improve the prospects for 200
kW stacks.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2006.08.012</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Electrochemical generation ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Flow distribution ; Fuel cells ; Internal reforming ; MCFC</subject><ispartof>Journal of power sources, 2006-11, Vol.162 (2), p.1029-1035</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-759e9118bfa00af02f56c6fa50bce217e8b20fa890dd08c7be356aaaa8ff7213</citedby><cites>FETCH-LOGICAL-c373t-759e9118bfa00af02f56c6fa50bce217e8b20fa890dd08c7be356aaaa8ff7213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2006.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18394355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Tatsunori</creatorcontrib><creatorcontrib>Matsumoto, Shuichi</creatorcontrib><creatorcontrib>Matsumura, Mitsuie</creatorcontrib><creatorcontrib>Miyazaki, Masayuki</creatorcontrib><creatorcontrib>Umeda, Minoru</creatorcontrib><title>Gas distribution in molten-carbonate fuel cells</title><title>Journal of power sources</title><description>This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each cell uniformly and to achieve a reasonable temperature distribution, we have proposed a large-scale stack divided into four blocks from the point of view of the gas flow scheme. In our proposal, each block consists of 55 cells, 9 internal reforming units, and 1 internal manifold. The flow variation was examined by measurements on an element, numerical analysis, and measurements on a stack. We have found that (i) the flow variation among the four blocks is 1.5% or less and can be made better by using an orifice plate; (ii) the flow variation along the stacking direction in each block is within ±1%; (iii) improvement of the flow distribution in the reforming unit affects the uniformity of the temperature distribution in the cell area. These results can improve the prospects for 200
kW stacks.</description><subject>Applied sciences</subject><subject>Electrochemical generation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Flow distribution</subject><subject>Fuel cells</subject><subject>Internal reforming</subject><subject>MCFC</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwF1AW2JKe7Tp2NlBFC1Illu6W45wlR2lc7ATEvydVixi55ZbnvY-HkHsKBQVaLtqiPYSvFMZYMICyAFUAZRdkRpXkOZNCXJIZcKlyKQW_JjcptQBAqYQZWWxMyhqfhujrcfChz3yf7UM3YJ9bE-vQmwEzN2KXWey6dEuunOkS3p37nOzWL7vVa75937ytnre55ZIPuRQVVpSq2hkA44A5UdrSGQG1RUYlqpqBM6qCpgFlZY1clGYq5ZxklM_J42nsIYaPEdOg9z4dDzA9hjFpVjGpBFtOYHkCbQwpRXT6EP3exG9NQR_16Fb_6tFHPRqUnvRMwYfzBpOs6Vw0vfXpL614teRCTNzTicPp20-PUSfrsbfY-Ih20E3w_636AcEXf2s</recordid><startdate>20061122</startdate><enddate>20061122</enddate><creator>Okada, Tatsunori</creator><creator>Matsumoto, Shuichi</creator><creator>Matsumura, Mitsuie</creator><creator>Miyazaki, Masayuki</creator><creator>Umeda, Minoru</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20061122</creationdate><title>Gas distribution in molten-carbonate fuel cells</title><author>Okada, Tatsunori ; Matsumoto, Shuichi ; Matsumura, Mitsuie ; Miyazaki, Masayuki ; Umeda, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-759e9118bfa00af02f56c6fa50bce217e8b20fa890dd08c7be356aaaa8ff7213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Electrochemical generation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Flow distribution</topic><topic>Fuel cells</topic><topic>Internal reforming</topic><topic>MCFC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Tatsunori</creatorcontrib><creatorcontrib>Matsumoto, Shuichi</creatorcontrib><creatorcontrib>Matsumura, Mitsuie</creatorcontrib><creatorcontrib>Miyazaki, Masayuki</creatorcontrib><creatorcontrib>Umeda, Minoru</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Tatsunori</au><au>Matsumoto, Shuichi</au><au>Matsumura, Mitsuie</au><au>Miyazaki, Masayuki</au><au>Umeda, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas distribution in molten-carbonate fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2006-11-22</date><risdate>2006</risdate><volume>162</volume><issue>2</issue><spage>1029</spage><epage>1035</epage><pages>1029-1035</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each cell uniformly and to achieve a reasonable temperature distribution, we have proposed a large-scale stack divided into four blocks from the point of view of the gas flow scheme. In our proposal, each block consists of 55 cells, 9 internal reforming units, and 1 internal manifold. The flow variation was examined by measurements on an element, numerical analysis, and measurements on a stack. We have found that (i) the flow variation among the four blocks is 1.5% or less and can be made better by using an orifice plate; (ii) the flow variation along the stacking direction in each block is within ±1%; (iii) improvement of the flow distribution in the reforming unit affects the uniformity of the temperature distribution in the cell area. These results can improve the prospects for 200
kW stacks.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2006.08.012</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2006-11, Vol.162 (2), p.1029-1035 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_29278524 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Electrochemical generation Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Flow distribution Fuel cells Internal reforming MCFC |
title | Gas distribution in molten-carbonate fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20distribution%20in%20molten-carbonate%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Okada,%20Tatsunori&rft.date=2006-11-22&rft.volume=162&rft.issue=2&rft.spage=1029&rft.epage=1035&rft.pages=1029-1035&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2006.08.012&rft_dat=%3Cproquest_cross%3E29278524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29278524&rft_id=info:pmid/&rft_els_id=S0378775306015618&rfr_iscdi=true |