Gas distribution in molten-carbonate fuel cells

This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2006-11, Vol.162 (2), p.1029-1035
Hauptverfasser: Okada, Tatsunori, Matsumoto, Shuichi, Matsumura, Mitsuie, Miyazaki, Masayuki, Umeda, Minoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1035
container_issue 2
container_start_page 1029
container_title Journal of power sources
container_volume 162
creator Okada, Tatsunori
Matsumoto, Shuichi
Matsumura, Mitsuie
Miyazaki, Masayuki
Umeda, Minoru
description This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each cell uniformly and to achieve a reasonable temperature distribution, we have proposed a large-scale stack divided into four blocks from the point of view of the gas flow scheme. In our proposal, each block consists of 55 cells, 9 internal reforming units, and 1 internal manifold. The flow variation was examined by measurements on an element, numerical analysis, and measurements on a stack. We have found that (i) the flow variation among the four blocks is 1.5% or less and can be made better by using an orifice plate; (ii) the flow variation along the stacking direction in each block is within ±1%; (iii) improvement of the flow distribution in the reforming unit affects the uniformity of the temperature distribution in the cell area. These results can improve the prospects for 200 kW stacks.
doi_str_mv 10.1016/j.jpowsour.2006.08.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29278524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775306015618</els_id><sourcerecordid>29278524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-759e9118bfa00af02f56c6fa50bce217e8b20fa890dd08c7be356aaaa8ff7213</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwF1AW2JKe7Tp2NlBFC1Illu6W45wlR2lc7ATEvydVixi55ZbnvY-HkHsKBQVaLtqiPYSvFMZYMICyAFUAZRdkRpXkOZNCXJIZcKlyKQW_JjcptQBAqYQZWWxMyhqfhujrcfChz3yf7UM3YJ9bE-vQmwEzN2KXWey6dEuunOkS3p37nOzWL7vVa75937ytnre55ZIPuRQVVpSq2hkA44A5UdrSGQG1RUYlqpqBM6qCpgFlZY1clGYq5ZxklM_J42nsIYaPEdOg9z4dDzA9hjFpVjGpBFtOYHkCbQwpRXT6EP3exG9NQR_16Fb_6tFHPRqUnvRMwYfzBpOs6Vw0vfXpL614teRCTNzTicPp20-PUSfrsbfY-Ih20E3w_636AcEXf2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29278524</pqid></control><display><type>article</type><title>Gas distribution in molten-carbonate fuel cells</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Okada, Tatsunori ; Matsumoto, Shuichi ; Matsumura, Mitsuie ; Miyazaki, Masayuki ; Umeda, Minoru</creator><creatorcontrib>Okada, Tatsunori ; Matsumoto, Shuichi ; Matsumura, Mitsuie ; Miyazaki, Masayuki ; Umeda, Minoru</creatorcontrib><description>This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each cell uniformly and to achieve a reasonable temperature distribution, we have proposed a large-scale stack divided into four blocks from the point of view of the gas flow scheme. In our proposal, each block consists of 55 cells, 9 internal reforming units, and 1 internal manifold. The flow variation was examined by measurements on an element, numerical analysis, and measurements on a stack. We have found that (i) the flow variation among the four blocks is 1.5% or less and can be made better by using an orifice plate; (ii) the flow variation along the stacking direction in each block is within ±1%; (iii) improvement of the flow distribution in the reforming unit affects the uniformity of the temperature distribution in the cell area. These results can improve the prospects for 200 kW stacks.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2006.08.012</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Electrochemical generation ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Flow distribution ; Fuel cells ; Internal reforming ; MCFC</subject><ispartof>Journal of power sources, 2006-11, Vol.162 (2), p.1029-1035</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-759e9118bfa00af02f56c6fa50bce217e8b20fa890dd08c7be356aaaa8ff7213</citedby><cites>FETCH-LOGICAL-c373t-759e9118bfa00af02f56c6fa50bce217e8b20fa890dd08c7be356aaaa8ff7213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2006.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18394355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Tatsunori</creatorcontrib><creatorcontrib>Matsumoto, Shuichi</creatorcontrib><creatorcontrib>Matsumura, Mitsuie</creatorcontrib><creatorcontrib>Miyazaki, Masayuki</creatorcontrib><creatorcontrib>Umeda, Minoru</creatorcontrib><title>Gas distribution in molten-carbonate fuel cells</title><title>Journal of power sources</title><description>This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each cell uniformly and to achieve a reasonable temperature distribution, we have proposed a large-scale stack divided into four blocks from the point of view of the gas flow scheme. In our proposal, each block consists of 55 cells, 9 internal reforming units, and 1 internal manifold. The flow variation was examined by measurements on an element, numerical analysis, and measurements on a stack. We have found that (i) the flow variation among the four blocks is 1.5% or less and can be made better by using an orifice plate; (ii) the flow variation along the stacking direction in each block is within ±1%; (iii) improvement of the flow distribution in the reforming unit affects the uniformity of the temperature distribution in the cell area. These results can improve the prospects for 200 kW stacks.</description><subject>Applied sciences</subject><subject>Electrochemical generation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Flow distribution</subject><subject>Fuel cells</subject><subject>Internal reforming</subject><subject>MCFC</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwF1AW2JKe7Tp2NlBFC1Illu6W45wlR2lc7ATEvydVixi55ZbnvY-HkHsKBQVaLtqiPYSvFMZYMICyAFUAZRdkRpXkOZNCXJIZcKlyKQW_JjcptQBAqYQZWWxMyhqfhujrcfChz3yf7UM3YJ9bE-vQmwEzN2KXWey6dEuunOkS3p37nOzWL7vVa75937ytnre55ZIPuRQVVpSq2hkA44A5UdrSGQG1RUYlqpqBM6qCpgFlZY1clGYq5ZxklM_J42nsIYaPEdOg9z4dDzA9hjFpVjGpBFtOYHkCbQwpRXT6EP3exG9NQR_16Fb_6tFHPRqUnvRMwYfzBpOs6Vw0vfXpL614teRCTNzTicPp20-PUSfrsbfY-Ih20E3w_636AcEXf2s</recordid><startdate>20061122</startdate><enddate>20061122</enddate><creator>Okada, Tatsunori</creator><creator>Matsumoto, Shuichi</creator><creator>Matsumura, Mitsuie</creator><creator>Miyazaki, Masayuki</creator><creator>Umeda, Minoru</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20061122</creationdate><title>Gas distribution in molten-carbonate fuel cells</title><author>Okada, Tatsunori ; Matsumoto, Shuichi ; Matsumura, Mitsuie ; Miyazaki, Masayuki ; Umeda, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-759e9118bfa00af02f56c6fa50bce217e8b20fa890dd08c7be356aaaa8ff7213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Electrochemical generation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Flow distribution</topic><topic>Fuel cells</topic><topic>Internal reforming</topic><topic>MCFC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Tatsunori</creatorcontrib><creatorcontrib>Matsumoto, Shuichi</creatorcontrib><creatorcontrib>Matsumura, Mitsuie</creatorcontrib><creatorcontrib>Miyazaki, Masayuki</creatorcontrib><creatorcontrib>Umeda, Minoru</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Tatsunori</au><au>Matsumoto, Shuichi</au><au>Matsumura, Mitsuie</au><au>Miyazaki, Masayuki</au><au>Umeda, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas distribution in molten-carbonate fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2006-11-22</date><risdate>2006</risdate><volume>162</volume><issue>2</issue><spage>1029</spage><epage>1035</epage><pages>1029-1035</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This paper presents an investigation of the gas distribution in a large-scale stack such as a 200-kW internal reforming (IR) molten-carbonate fuel cell (MCFC) stack. The gas flow scheme is important for the performance of the cell and for the temperature distribution. In order to supply gas to each cell uniformly and to achieve a reasonable temperature distribution, we have proposed a large-scale stack divided into four blocks from the point of view of the gas flow scheme. In our proposal, each block consists of 55 cells, 9 internal reforming units, and 1 internal manifold. The flow variation was examined by measurements on an element, numerical analysis, and measurements on a stack. We have found that (i) the flow variation among the four blocks is 1.5% or less and can be made better by using an orifice plate; (ii) the flow variation along the stacking direction in each block is within ±1%; (iii) improvement of the flow distribution in the reforming unit affects the uniformity of the temperature distribution in the cell area. These results can improve the prospects for 200 kW stacks.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2006.08.012</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2006-11, Vol.162 (2), p.1029-1035
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_29278524
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Electrochemical generation
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Flow distribution
Fuel cells
Internal reforming
MCFC
title Gas distribution in molten-carbonate fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20distribution%20in%20molten-carbonate%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Okada,%20Tatsunori&rft.date=2006-11-22&rft.volume=162&rft.issue=2&rft.spage=1029&rft.epage=1035&rft.pages=1029-1035&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2006.08.012&rft_dat=%3Cproquest_cross%3E29278524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29278524&rft_id=info:pmid/&rft_els_id=S0378775306015618&rfr_iscdi=true